
Thermochemistry and Chemical Kinetics: Putting the Second Law to Work © 2021 Patrick E. Fleming – 
Available under Creative Commons Attribution-Noncommercial-Share Alike license 4.0 (CC BY-NC-SA 4.0) 

 

Chapter 7: Mixtures and Solutions 
 

 Up until this point, we have conserved single-component systems which do not change in 

composition. By and large, nature consists of much more complicated systems, containing many 

components and continually undergoing changes in composition through phase changes or 

chemical reactions or both! In order to expand our thermodynamic toolbox, we will begin by 

discussing mixtures. 

 

Thermodynamics of mixing 
 

 A natural place to begin a discussion of mixtures is to consider a mixture of two gases. 

Consider samples of the two gases filling two partitions in a single container, both at the same 

pressure, temperature, having volumes VA and VB. 

 

 
 

After being allowed to mix isothermally, the partial pressures of the two gases will drop by a 

factor of 2 (although the total pressure will still be the original value) and the volumes occupied 

by the two gases will double. 
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Enthalpy of Mixing 
 

Assuming ideal behavior, so that interactions between individual gas molecules are 

unimportant, it is fairly easy to calculate H for each gas, as it is simply an isothermal 

expansion. The total enthalpy of mixing is then given by 

 

∆𝐻𝑚𝑖𝑥 = ∆𝐻𝐴 + ∆𝐻𝐵 

 

And since the enthalpy change for an isothermal expansion of an ideal gas is zero,  

 

∆𝐻𝑚𝑖𝑥 =  0 
 

is a straight-forward conclusion. This will be the criterion for an ideal mixture. 

 

 In general, real mixtures will deviate from this limiting ideal behavior due to interactions 

between molecules and other concerns. Also, many substances undergo chemical changes when 

they mix with other substances. But for now, we will limit ourselves to discussing mixtures in 

which no chemical reactions take place. 

 

Entropy of Mixing 
 

 The entropy change induced due to isothermal mixing (assuming again no interactions 

between the molecules in the gas mixture) is again going to be the sum of the contributions from 

isothermal expansions of the two gases. Fortunately, entropy changes for isothermal expansions 

are easy to calculate for ideal gases. 

 

∆𝑆 = 𝑛𝑅 ln (
𝑉2
𝑉1
) 

 

If we use the initial volumes VA and VB for the initial volumes of gases A and B, the total 

volume after mixing is VA + VB, and the total entropy change is 

 

∆𝑆𝑚𝑖𝑥 = 𝑛𝐴𝑅 ln (
𝑉𝐴 + 𝑉𝐵
𝑉𝐴

) + 𝑛𝐵𝑅 ln (
𝑉𝐴 + 𝑉𝐵
𝑉𝐵

) 

 

Noting that the term (
𝑉𝐴+ 𝑉𝐵

𝑉𝐴
) is 

1

𝑥𝐴
 (where xA is the mole fraction of A after mixing), and that nA 

can be expresses as the product of xA and the total number of moles, the expression can be 

rewritten 

 

∆𝑆𝑚𝑖𝑥 = 𝑛𝑡𝑜𝑡𝑅[−𝑥𝐴 ln(𝑥𝐴) − 𝑥𝐵 ln(𝑥𝐵)] 
 

It should be noted that because the mole fraction is always between 0 and 1, that ln(xi) is always 

a negative number. As such, the entropy change for a system undergoing isothermal mixing is 

always positive, as one might expect (since mixing will make the system less ordered.) 
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Free Energy of Mixing 
 

 Calculating Gmix should be no more difficult than calculating Smix. For isothermal 

mixing,, and constant total pressure 

 

∆𝐺𝑚𝑖𝑥 = ∆𝐻𝑚𝑖𝑥–  𝑇∆𝑆𝑚𝑖𝑥 

 

and so it follows from above that for the isothermal mixing of two gases at constant total 

pressure 

 

∆𝐺𝑚𝑖𝑥 = 𝑛𝑡𝑜𝑡𝑅𝑇[𝑥𝐴 ln(𝑥𝐴) + 𝑥𝐵 ln(𝑥𝐵)] 
 

The relationships describing the isothermal mixing of two ideal gases A and B is summarized in 

the graph below. 

 

 
 

Again, because ln(xi) is always negative, Gmix is also always negative, implying that 

mixing is always a spontaneous process. This is true for gases. But for many combinations of 

liquids or solids, the strong intermolecular forces may make mixing unfavorable (for example in 

the case of vegetable oil and water.) Also, these interactions may make the volume non-additive 

as well (as in the case of ethanol and water.) 

 

Partial Molar Volume 
 

 The partial molar volume of compound A in a mixture of A and B can be defined as 

 

𝑉𝐴 = (
𝜕𝑉

𝜕𝑛𝐴
)
𝑝,𝑇,𝑛𝐵
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Using this definition, a change in volume for the mixture can be described using the total 

differential of V: 

 

𝑑𝑉 =  (
𝜕𝑉

𝜕𝑛𝐴
)
𝑝,𝑇,𝑛𝐵

𝑑𝑛𝐴 + (
𝜕𝑉

𝜕𝑛𝐵
)
𝑝,𝑇,𝑛𝐴

𝑑𝑛𝐵  

 

or 

 

𝑑𝑉 =  𝑉𝐴𝑑𝑛𝐴 + 𝑉𝐵𝑑𝑛𝐵  

And integration yields 

 

𝑉 = ∫ 𝑉𝐴𝑑𝑛𝐴 + ∫ 𝑉𝐵𝑑𝑛𝐵

𝑛𝐵

0

𝑛𝐴

0

 

= 𝑉𝐴𝑛𝐴 + 𝑉𝐵𝑛𝐵 

 

This result is important as it demonstrates an important quality of partial molar quantities. 

Specifically, if i represents the partial molar property X for component i of a mixture, The total 

property X for the mixture is given by 

 

𝑋 =∑𝜉𝑖𝑛𝑖
𝑖

 

 

It should be noted that while the volume of a substance is never negative, the partial molar 

volume can be. An example of this appears in the dissolution of a strong electrolyte in water. 

Because the water molecules in the solvation sphere of the ions are physically closer together 

than they are in bulk pure water, there is a volume decrease when the electrolyte dissolves. This 

is easily observable at high concentrations where a larger fraction of the water in the sample is 

tied up in solvation of the ions. 

 

Chemical Potential 
 

 In much the same fashion as the partial molar volume is defined, the partial molar 

Gibbs function is defined for compound i in a mixture: 

 

𝜇𝑖 = (
𝜕𝐺

𝜕𝑛𝑖
)
𝑝,𝑇,𝑛_𝑗≠𝑖

 

 

This particular partial molar function is of particular importance, and is called the chemical 

potential. The chemical potential tells how the Gibbs function will change as the composition of 

the mixture changes. And since systems tend to seek a minimum aggregate Gibbs function, the 

chemical potential will point to the direction the system can move in order to reduce the total 

Gibbs function. In general, the total change in the Gibbs function (dG) can be calculated from 
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𝑑𝐺 = (
𝜕𝐺

𝜕𝑝
)
𝑇,𝑛𝑖

𝑑𝑝 + (
𝜕𝐺

𝜕𝑇
)
𝑝,𝑛𝑖

𝑑𝑇 +∑(
𝜕𝐺

𝜕𝑛𝑖
)
𝑇,𝑛𝑗≠𝑖

𝑑𝑛𝑖
𝑖

 

 

Or, by substituting the definition for the chemical potential, and evaluating the pressure and 

temperature derivatives as was done in chapter 6: 

 

𝑑𝐺 =  𝑉𝑑𝑝 –  𝑆𝑑𝑇 + ∑𝜇𝑖𝑑𝑛𝑖
𝑖

 

 

But as it turns out, the chemical potential can be defined as the partial molar derivative any of the 

four major thermodynamic functions U, H, A, or G: 

 

 

 

𝑑𝑈 =  𝑇𝑑𝑆 –  𝑝𝑑𝑉 + ∑𝜇𝑖𝑑𝑛𝑖
𝑖

 

 

𝜇𝑖 = (
𝜕𝑈

𝜕𝑛𝑖
)
𝑆,𝑉,𝑛𝑗≠𝑖

 

 

𝑑𝐻 =  𝑇𝑑𝑆 +  𝑉𝑑𝑇 + ∑𝜇𝑖𝑑𝑛𝑖
𝑖

 

 

𝜇𝑖 = (
𝜕𝐻

𝜕𝑛𝑖
)
𝑆,𝑝,𝑛𝑗≠𝑖

 

 

𝑑𝐴 =  −𝑝𝑑𝑉 –  𝑇𝑑𝑆 + ∑𝜇𝑖𝑑𝑛𝑖
𝑖

 

 

𝜇𝑖 = (
𝜕𝐴

𝜕𝑛𝑖
)
 𝑉,𝑇,𝑛𝑗≠𝑖

 

 

𝑑𝐺 =  𝑉𝑑𝑝 –  𝑆𝑑𝑇 + ∑𝜇𝑖𝑑𝑛𝑖
𝑖

 

 

𝜇𝑖 = (
𝜕𝐺

𝜕𝑛𝑖
)
 𝑝,𝑇,𝑛𝑗≠𝑖

 

 

The last definition, in which the chemical potential is defined as the partial molar Gibbs function 

is the most commonly used, and perhaps the most useful. As the partial most Gibbs function, it is 

easy to show that 

 

𝑑𝜇 = 𝑉𝑑𝑝 − 𝑆𝑑𝑇 

 

Where V is the molar volume, and S is the molar entropy. Using this expression, it is easy to 

show that 

 

(
𝜕𝜇

𝜕𝑝
)
𝑇

= 𝑉 

 

https://creativecommons.org/licenses/by-nc-sa/4.0/


Chapter 7 – Mixtures and Solutions 

Thermochemistry and Chemical Kinetics: Mixtures and Solutions © 2021 Patrick E. Fleming – Available under 
Creative Commons Attribution-Noncommercial-Share Alike license 4.0 (CC BY-NC-SA 4.0) 

162 

 

And so at constant temperature 

 

∫ 𝑑𝜇
𝜇

𝜇𝑜
= ∫ 𝑉𝑑𝑝

𝑝

𝑝𝑜
 

 

So that for a substance for which the molar volume is fairly independent of pressure at constant 

temperature (T is very small) 

 

∫ 𝑑𝜇
𝜇

𝜇𝑜
= 𝑉∫ 𝑑𝑝

𝑝

𝑝𝑜
 

𝜇 − 𝜇0 = 𝑉(𝑝 − 𝑝𝑜) 
 

Or 

 

𝜇 = 𝜇0  +  𝑉(𝑝 − 𝑝𝑜) 
 

Where po is a reference pressure (generally the standard pressure of 1 atm) and o is the chemical 

potential at the standard pressure. If the substance is highly compressible (such as a gas) the 

pressure dependence of the molar volume is needed to complete the integral. If the substance is 

an ideal gas 

 

𝑉 =
𝑅𝑇

𝑝
 

 

And so at constant temperature 

 

∫ 𝑑𝜇
𝜇

𝜇𝑜
= 𝑅𝑇∫

𝑑𝑝

𝑝

𝑝

𝑝𝑜
 

 

Or 

 

𝑑𝜇 = 𝑑𝜇𝑜 + 𝑅𝑇 ln (
𝑝

𝑝𝑜
) 

 

The Gibbs-Duhem equation 
 

 For a system at equilibrium, the Gibbs-Duhem equation must hold: 

 

∑𝑛𝑖𝑑𝜇𝑖
𝑖

= 0 

 

This relationship places a compositional constraint upon any changes in the chemical potential in 

a mixture at constant temperature and pressure for a given composition. 
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This result is easily derived when one considers that i represents the partial molar Gibbs 

function for component i. And as with other partial molar quantities, 

 

𝐺𝑡𝑜𝑡 =∑𝑛𝑖𝜇𝑖
𝑖

 

 

Taking the derivative of both sides yields 

 

𝑑𝐺 =∑𝑛𝑖𝑑𝜇𝑖
𝑖

+∑𝜇𝑖𝑑𝑛𝑖
𝑖

 

 

But dG can also be expressed as 

 

𝑑𝐺 =  𝑉𝑑𝑝 –  𝑆𝑑𝑇 + ∑𝜇𝑖𝑑𝑛𝑖
𝑖

 

Setting these two expressions equal to one another 

 

∑𝑛𝑖𝑑𝜇𝑖
𝑖

+∑𝜇𝑖𝑑𝑛𝑖
𝑖

=  𝑉𝑑𝑝 –  𝑆𝑑𝑇 + ∑𝜇𝑖𝑑𝑛𝑖
𝑖

 

 

And after canceling the ∑ 𝜇𝑖𝑑𝑛𝑖𝑖  term, one gets 

 

∑𝑛𝑖𝑑𝜇𝑖
𝑖

=  𝑉𝑑𝑝 –  𝑆𝑑𝑇  

 

For a system at constant temperature and pressure 

 

𝑉𝑑𝑝 − 𝑆𝑑𝑇 = 0 

 

This results in the Gibbs-Duhem equation, 

 

∑𝑛𝑖𝑑𝜇𝑖
𝑖

=  0 

 

This expression relates how the chemical potential can change for a given composition while the 

system maintains equilibrium. So for a binary system, consisting of components A and B (the 

two most often studied compounds in all of chemistry) 

 

𝑑𝜇𝐵 = −
𝑛𝐴
𝑛𝐵
𝑑𝜇𝐴 
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Fugacity 
 

 The relationship for chemical potential 

 

𝜇 =  𝜇𝑜 + 𝑅𝑇 ln (
𝑝

𝑝𝑜
) 

 

was derived assuming ideal gas behavior. But for real gases that deviate widely from ideal 

behavior, the expression has only limited applicability. In order to use the simple expression on 

real gases, a “fudge” factor is introduced called fugacity. Using fugacity instead of pressure, the 

chemical potential expression becomes 

 

𝜇 =  𝜇𝑜 + 𝑅𝑇 ln (
𝑓

𝑓𝑜
) 

 

where f is the fugacity. Fugacity is related to pressure, but contains all of the deviations from 

ideality within it. To see how it is related to pressure, consider that a change in chemical 

potential for a single component system can be expressed as 

 

𝑑𝜇 = 𝑉𝑑𝑝 − 𝑆𝑑𝑇 

 

And so 

 

(
𝜕𝜇

𝜕𝑝
)
𝑇

=  𝑉 

 

Differentiating the expression for chemical potential above with respect to pressure at constant 

volume results in 

 

(
𝜕𝜇

𝜕𝑝
)
𝑇

= {
𝜕

𝜕𝑝
[𝜇𝑜 + 𝑅𝑇 ln (

𝑓

𝑓𝑜
)]}

𝑇

 

 

which simplifies to 

 

(
𝜕𝜇

𝜕𝑝
)
𝑇

=  𝑅𝑇 [
𝜕 ln(𝑓)

𝜕𝑝
]
𝑇

=  𝑉 

 

 

Multiplying both sides by p/RT gives 

 

𝑝 [
𝜕 ln(𝑓)

𝜕𝑝
]
𝑇

 =
𝑝𝑉

𝑅𝑇
= 𝑍 
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where Z is the compression factor as discussed in Chapter 2. Now, we can use the expression 

above to obtain the fugacity coefficient , as defined by 

 

𝑓 = 𝛾𝑝 

 

Taking the natural logarithm of both sides yields 

 

ln 𝑓 = ln 𝛾 + ln 𝑝 

 

Or 

 

ln 𝛾 = ln 𝑓 − ln 𝑝 

 

Using some calculus and substitutions from above, 

 

 ∫ (
𝜕 ln 𝛾

𝜕𝑝
)
𝑇

𝑑𝑝 =  ∫ (
𝜕 ln 𝑓

𝜕𝑝
−
𝜕 ln 𝑝

𝜕𝑝
)
𝑇

𝑑𝑝 =  ∫(
𝑍

𝑝
−
1

𝑝
)
𝑇

𝑑𝑝 

 

Finally, integrating from 0 to p yields 

 

ln 𝛾 = ∫ (
𝑍 − 1

𝑝
)
𝑇

𝑑𝑝
𝑝

0

 

 

If the gas behaves ideally,  = 1. In general, this will be the limiting value as p → 0 since all 

gases behave ideal as the pressure approaches 0. The advantage to using the fugacity in this 

manner is that it allows one to use the expression  

 

𝜇 =  𝜇𝑜 + 𝑅𝑇 ln (
𝑓

𝑓𝑜
) 

 

to calculate the chemical potential, insuring that 

 

(
𝜕𝜇

𝜕𝑝
)
𝑇

= 𝑉 

 

even for gases that deviate from ideal behavior! 

 

Colligative Properties 
 

 Colligative properties are important properties of solutions as they describe how the 

properties of the solvent will change as solute (or solutes) is (are) added. Before discussing these 

important properties, let us first review some definitions. 
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Solution – a homogeneous mixture. 

Solvent – The component of a solution with the largest mole fraction 

Solute – Any component of a solution that is not the solvent. 

 

 Solutions can exist in solid (alloys of metals are an example of solid-phase solutions), 

liquid, or gaseous (aerosols are examples of gas-phase solutions) forms. For the most part, this 

discussion will focus on liquid-phase solutions. 

 

Freezing Point Depression 
 

 In general (and as will be discussed in Chapter 8 in more detail) a liquid will freeze when 

 

𝜇𝑠𝑜𝑙𝑖𝑑 ≤ 𝜇𝑙𝑖𝑞𝑢𝑖𝑑 

 

As such, the freezing point of the solvent in a solution will be affected by anything that changes 

the chemical potential of the solvent. As it turns out, the chemical potential of the solvent is 

reduced by the presence of a solute. 

 

 In a mixture, the chemical potential of component A can be calculated by 

 

𝜇𝐴 = 𝜇𝐴
𝑜 + 𝑅𝑇 ln 𝑥𝐴 

 

And because xA is always less than (or equal to) 1, the chemical potential is always reduced by 

the addition of another component. 

 

 The condition under which the solvent will freeze is 

 

𝜇𝐴,𝑠𝑜𝑙𝑖𝑑 = 𝜇𝐴,𝑙𝑖𝑞𝑢𝑖𝑑 

 

where the chemical potential of the liquid is given by 

 

𝜇𝐴 = 𝜇𝐴
𝑜 + 𝑅𝑇 ln 𝑥𝐴 

 

Rearrangement yields 

 
𝜇𝐴 − 𝜇𝐴

𝑜

𝑅𝑇
= ln 𝑥𝐴 

 

In order to evaluate the temperature dependence of the chemical potential, it is useful to consider 

the temperature derivative at constant pressure. 

 

[
𝜕

𝜕𝑇
(
𝜇𝐴 − 𝜇𝐴

𝑜

𝑅𝑇
)]
𝑝

= (
𝜕 ln 𝑥𝐴
𝜕𝑇

)
𝑝
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−
(𝜇𝐴 − 𝜇𝐴

𝑜)

𝑅𝑇2
+
1

𝑅𝑇
[(
𝜕𝜇𝐴
𝜕𝑇
)
𝑝
− (

𝜕𝜇𝐴
𝑜

𝜕𝑇
)
𝑝

] = (
𝜕 ln 𝑥𝐴
𝜕𝑇

)
𝑝
 

 

Recalling that 

 

𝜇 = 𝐻 = 𝑇𝑆 

 

and  

 

(
𝜕𝜇

𝜕𝑇
)
𝑝
= −𝑆 

 

The previous equation becomes 

 

−
(𝐻𝐴 − 𝑇𝑆𝐴 − 𝐻𝐴

𝑜 + 𝑇𝑆𝐴
𝑜)

𝑅𝑇2
+
1

𝑅𝑇
[−𝑆𝐴 + 𝑆𝐴

𝑜] = (
𝜕 ln 𝑥𝐴
𝜕𝑇

)
𝑝
 

 

And noting that in the case of the solvent freezing, 𝐻𝐴
𝑜 is the enthalpy of the pure solvent in solid 

form, and HA is the enthalpy of the solvent in the liquid solution. So 

 

𝐻𝐴
𝑜 − 𝐻𝐴 = ∆𝐻𝑓𝑢𝑠 

 

The previous equation becomes 

 
∆𝐻𝑓𝑢𝑠

𝑅𝑇2
−
−𝑆𝐴 + 𝑆𝐴

𝑜

𝑅𝑇
+
−𝑆𝐴 + 𝑆𝐴

𝑜

𝑅𝑇
= (
𝜕 ln 𝑥𝐴
𝜕𝑇

)
𝑝
 

 

or 

 
∆𝐻𝑓𝑢𝑠

𝑅𝑇2
= (
𝜕 ln 𝑥𝐴
𝜕𝑇

)
𝑝
 

 

Separating the variables puts the equation into an integrable form. 

 

∫
∆𝐻𝑓𝑢𝑠

𝑅𝑇2
𝑑𝑇

𝑇

𝑇𝑜
= ∫𝑑 ln 𝑥𝐴 

 

where To is the freezing point of the pure solvent and T is the temperature at which the solvent 

will begin to solidify in the solution. After integration 

 

−
∆𝐻𝑓𝑢𝑠

𝑅
(
1

𝑇
−
1

𝑇𝑜
) = ln 𝑥𝐴 
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This can be simplified by noting that 

 
1

𝑇
−
1

𝑇𝑜
=
𝑇𝑜 − 𝑇

𝑇𝑇𝑜
=
∆𝑇

𝑇𝑇𝑜
 

 

where T is the difference between the freezing temperature of the pure solvent and that of the 

solvent in the solution. Also, for small deviations from the pure freezing point, TTo can be 

replaced by the approximate value (To)2. So the expression becomes 

 

−
∆𝐻𝑓𝑢𝑠

𝑅(𝑇𝑜)2
∆𝑇 = ln 𝑥𝐴 

 

Further, for dilute solutions, for which xA, the mole fraction of the solvent is very nearly 1,  

values of xA, 

 

ln 𝑥𝐴 ≈ −(1 − 𝑥𝐴) =  −𝑥𝐵 

 

where xB is the mole fraction of the solute. After a small bit of rearrangement, this results in an 

expression for freezing point depression of 

 

∆𝑇 = (
𝑅𝑇𝑜2

∆𝐻𝑓𝑢𝑠
) 𝑥𝐵 

 

The factor (
𝑅𝑇𝑜2

∆𝐻𝑓𝑢𝑠
) can be replaced by Kf, which is the cryoscopic constant for the solvent.  

 

∆𝑇 = 𝐾𝑓𝑥𝐵 

 

T gives the magnitude of the reduction of freezing point for the solution. Since Hfus and To are 

properties of the solvent, the freezing point depression property is independent of the solute and 

is a property based solely on the nature of the solvent. Further, since xB was introduced as (1 - 

xA), it represents the sum of the mole fractions of all solutes present in the solution. 

 

It is important to keep in mind that for a real solution, freezing of the solvent changes the 

composition of the solution by decreasing the mole fraction of the solvent and increasing that of 

the solute. As such, the magnitude of T will change as the freezing process continually removes 

solvent from the liquid phase of the solution. 

 

Boiling Point Elevation 
 

 The derivation of an expression describing boiling point elevation is similar to that for 

freezing point depression. In short, the introduction of a solute into a liquid solvent lowers the 

chemical potential of the solvent, cause it to favor the liquid phase over the vapor phase. As sch, 

the temperature must be increased to increase the chemical potential of the solvent in the liquid 
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solution until it is equal to that of the vapor-phase solvent. The increase in the boiling point can 

be expressed as 

 

∆𝑇 = 𝐾𝑏𝑥𝐵 

 

where  

 

𝐾𝑏 = (
𝑅𝑇𝑜2

∆𝐻𝑣𝑎𝑝
) 

 

is called the ebullioscopic constant and, like the cryoscopic constant, is a property of the solvent 

that is independent of the solute or solutes. 

 

 A very elegant derivation of the form of the models for freezing point depression and 

boiling point elevation has been shared by F. E. Schubert (Schubert, 1983). 

 

 Cryoscopic and ebullioscopic constants are generally tabulated using molality as the unit 

of solute concentration rather than mole fraction. In this form, the equation for calculating the 

magnitude of the freezing point decrease or the boiling point increase is 

 

Δ𝑇 =  𝐾𝑓 ∙ 𝑚  or  Δ𝑇 =  𝐾𝑏 ∙ 𝑚 

 

where m is the concentration of the solute in moles per kg of solvent. Some values of Kf and Kb 

are shown in the table below. 

 

Substance Kf (oC kg mol-1) 𝑻𝒇
𝒐 (oC) Kb (oC kg mol-1) 𝑻𝒃

𝒐 (oC) 

Water 1.86 0.0 0.51 100.0 

Benzene 5.12 5.5 2.53 80.1 

Ethanol 1.99 -114.6 1.22 78.4 

CCl4 29.8 -22.3 5.02 76.8 

 

Example: 

The boiling point of a solution of 3.00 g of an unknown compound in 25.0 g of CCl4 raises the 

boiling point to 81.5 oC. What is the molar mass of the compound? 

 

Solution: 

The approach here is to find the number of moles of solute in the solution. First, find the 

concentration of the solution: 

 

(81.5 ℃ − 76.8 ℃) = (5.02 
℃ 𝑘𝑔

𝑚𝑜𝑙
)𝑚 

 

𝑚 = 0.936
𝑚𝑜𝑙

𝑘𝑔
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Using the number of kg of solvent, one finds the number fo moles of solute: 

 

(0.936
𝑚𝑜𝑙

𝑘𝑔
) (0.025 𝑘𝑔) = 0.0234 𝑚𝑜𝑙 

 

The ratio of mass to moles yields the final answer: 

 
3.00 𝑔

0.0234 𝑚𝑜𝑙
= 128

𝑔

𝑚𝑜𝑙
 

 

 

Vapor Pressure Lowering 
 

 For much the same reason as the lowering of freezing points and the elevation of boiling 

points for solvents into which a solute has been introduced, the vapor pressure of a volatile 

solvent will be decreased due to the introduction of a solute. The magnitude of this decrease can 

be quantified by examining the effect the solute has on the chemical potential of the solvent. 

 

 In order to establish equilibrium between the solvent in the solution and the solvent in the 

vapor phase above the solution, the chemical potentials of the two phases must be equal. 

 

𝜇𝑣𝑎𝑝𝑜𝑟 = 𝜇𝑠𝑜𝑙𝑣𝑒𝑛𝑡 

 

If the solute is not volatile, the vapor will be pure. And so (assuming ideal behavior) 

 

𝜇𝑣𝑎𝑝
𝑜 + 𝑅𝑇 ln

𝑝′

𝑝𝑜
= 𝜇𝐴

𝑜 + 𝑅𝑇 ln 𝑥𝐴 

 

Where p’ is the vapor pressure of the solvent over the solution. Similarly, for the pure solvent in 

equilibrium with its vapor 

 

𝜇𝐴
𝑜 = 𝜇𝑣𝑎𝑝

𝑜 + 𝑅𝑇 ln
𝑝𝐴
𝑝𝑜

 

 

where po is the standard pressure of 1 atm, and pA is the vapor pressure of the pure solvent. 

Substitution of the second expression into the first yields 

 

𝜇𝑣𝑎𝑝
𝑜 + 𝑅𝑇 ln

𝑝′

𝑝𝑜
= (𝜇𝑣𝑎𝑝

𝑜 + 𝑅𝑇 ln
𝑝𝐴
𝑝𝑜
) + 𝑅𝑇 ln 𝑥𝐴 

 

The terms for m_vap^o cancel, leaving  
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𝑅𝑇 ln
𝑝′

𝑝𝑜
= 𝑅𝑇 ln

𝑝𝐴
𝑝𝑜
+ 𝑅𝑇 ln 𝑥𝐴 

 

Subtracting RT ln(P_A/P^o) from both side produces 

 

𝑅𝑇 ln
𝑝′

𝑝𝑜
− 𝑅𝑇 ln

𝑝𝐴
𝑝𝑜
= 𝑅𝑇 ln 𝑥𝐴 

 

 

which rearranges to  

 

𝑅𝑇 ln
𝑝′

𝑝𝐴
= 𝑅𝑇 ln 𝑥𝐴 

 

Dividing both sides by RT and exponentiating the result yields 

 
𝑝′

𝑝𝐴
= 𝑥𝐴 

 

or 

 

𝑝’ =  𝑥𝐴𝑝𝐴 

 

This last result is Raoult’s Law. A more formal derivation would use the fugacities of the vapor 

phases, but would look essentially the same. Also, as in the case of freezing point depression and 

boiling point elevations, this derivation did not rely on the nature of the solute! However, unlike 

freezing point depression and boiling point elevation, this derivation did not rely on the solute 

being dilute, so the result should apply the entire range of concentrations of the solution. 

 

Example: 

Consider a mixture of two volatile liquids A and B. The vapor pressure of pure A is 150 Torr at 

some temperature, and that of pure B is 300 Torr at the same temperature. What is the total vapor 

pressure above a mixture of these compounds with the mole fraction of B of 0.600. What is the 

mole fraction of B in the vapor that is in equilibrium with the liquid mixture? 

 

Solution: 

Using Raoult’s Law: 

 

𝑝𝐴 = (0.400)(150 𝑇𝑜𝑟𝑟) = 60.0 𝑇𝑜𝑟𝑟 
𝑝𝐵 = (0.600)(300 𝑇𝑜𝑟𝑟) = 180 𝑇𝑜𝑟𝑟 

 

𝑝𝑡𝑜𝑡 = 𝑝𝐴 + 𝑝𝐵 = 240 𝑇𝑜𝑟𝑟 
 

To get the mole fractions in the gas phase, one can use Dalton’s Law of partial pressures. 
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𝑥𝐴 =
𝑝𝐴
𝑝𝑡𝑜𝑡

=
60.0 𝑇𝑜𝑟𝑟

240 𝑇𝑜𝑟𝑟
= 0.250 

 

𝑥𝐵 =
𝑝𝐵
𝑝𝑡𝑜𝑡

=
180 𝑇𝑜𝑟𝑟

240 𝑇𝑜𝑟𝑟
= 0.750 

 

And, of course, it is also useful to note that the sum of the mole fractions is 1 (as it must be!) 

 

 

Osmotic Pressure 
 

 Osmosis is a process by which solvent can pass through a semi-permeable membrane (a 

membrane through which solvent can pass, but not solute) from an area of low solute 

concentration to a region of high solute concentration. The osmotic pressure is the pressure that 

when exerted on the region of high solute concentration will halt the process of osmosis. 

 

  
 

The nature of osmosis and the magnitude of the osmotic pressure can be understood by 

examining the chemical potential of a pure solvent and that of the solvent in a solution. The 

chemical potential of the solvent in the solution (before any extra pressure is applied) is given by 

 

𝜇𝐴 = 𝜇𝐴
𝑜 + 𝑅𝑇 ln 𝑥𝐴 

 

And since xA < 1, the chemical potential is of the solvent in a solution is always lower than that 

of the pure solvent. So, to prevent osmosis from occurring, something needs to be done to raise 

the chemical potential of the solvent in the solution. This can be accomplished by applying 
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pressure to the solution. Specifically, the process of osmosis will stop when the chemical 

potential solvent in the solution is increased to the point of being equal to that of the pure 

solvent. The criterion, therefore, for osmosis to cease is 

 

𝜇𝐴
𝑜(𝑝) =  𝜇𝐴(𝑥𝐵, 𝑝 + 𝜋) 

 

To solve the problem to determine the magnitude of , the pressure dependence of the chemical 

potential is needed in addition to understanding the effect the solute has on lowering the 

chemical potential of the solvent in the solution. The magnitude, therefore, of the increase in 

chemical potential due to the application of excess pressure  must be equal to the magnitude of 

the reduction of chemical potential by the reduced mole fraction of the solvent in the solution. 

We already know that the chemical potential of the solvent in the solution is reduced by an 

amount given by 

 

𝜇𝐴
𝑜 − 𝜇𝐴 = − 𝑅𝑇 ln 𝑥𝐴 

 

And the increase in chemical potential due to the application of excess pressure is given by 

 

𝜇(𝑝 + 𝜋) =  𝜇(𝑝) + ∫ (
𝜕𝜇

𝜕𝑝
)
𝑇

𝑑𝑝
𝜋

𝑝

 

 

The integrals on the right can be evaluated by recognizing  

 

(
𝜕𝜇

𝜕𝑝
)
𝑇

= 𝑉 

 

where V is the molar volume of the substance. Combining these expressions results in 

 

−𝑅𝑇 ln 𝑥𝐴  =  ∫ 𝑉𝑑𝑝
𝑝+𝜋

𝑝

 

 

If the molar volume of the solvent is independent of pressure (has a very small value of T – 

which is the case for most liquids) the term on the right becomes. 

 

∫ 𝑉𝑑𝑝
𝑝+𝜋

𝑝

= 𝑉[𝑝]𝑝
𝑝+𝜋 = 𝑉𝜋 

 

Also, for values of xA very close to 1 

 

ln 𝑥𝐴 ≈ −(1 − 𝑥𝐴) = −𝑥𝐵 

 

So, for dilute solutions 

 

𝑥𝐵𝑅𝑇  =  𝑉𝜋 
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Or after rearrangement 

 

𝜋 =
𝑥𝐵𝑅𝑇

𝑉
 

 

again, where V is the molar volume of the solvent. And finally, since xB/V is the concentration of 

the solute B for cases where nB << nA. This allows one to write a simplified version of the 

expression which can be used in the case of very dilute solutions 

 

𝜋 = [𝐵]𝑅𝑇 

 

When a pressure exceeding the osmotic pressure  is applied to the solution, the chemical 

potential of the solvent in the solution can be made to exceed that of the pure solvent on the other 

side of the membrane, causing reverse osmosis to occur. This is a very effective method, for 

example, for recovering pure water from a mixture such as a salt/water solution. 

 

 

Solubility 
 

 The maximum solubility of a solute can be determined using the same methods we have 

used to describe colligative properties. The chemical potential of the solute in a liquid solution 

can be expressed  

 

𝜇𝐵(𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) = 𝜇𝐵
𝑜(𝑙𝑖𝑞𝑢𝑖𝑑) + 𝑅𝑇 ln 𝑥𝐵 

 

If this chemical potential is lower than that of a pure solid solute, the solute will dissolve into the 

liquid solvent (in order to achieve a lower chemical potential!) So the point of saturation is 

reached when the chemical potential of the solute in the solution is equal to that of the pure solid 

solute. 

 

𝜇𝐵
𝑜(𝑠𝑜𝑙𝑖𝑑) =  𝜇𝐵

𝑜(𝑙𝑖𝑞𝑢𝑖𝑑) + 𝑅𝑇 ln 𝑥𝐵 

 

Since the mole fraction at saturation is of interest, we can solve for ln(xB). 

 

ln 𝑥𝐵 =
𝜇𝐵
𝑜(𝑠𝑜𝑙𝑖𝑑) − 𝜇𝐵

𝑜(𝑙𝑖𝑞𝑢𝑖𝑑)

𝑅𝑇
 

 

The difference in the chemical potentials is the molar Gibbs function for the phase change of 

fusion. So this can be rewritten 

 

ln 𝑥𝐵 =
−Δ𝐺𝑓𝑢𝑠

𝑜

𝑅𝑇
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It would be convenient if the solubility could be expressed in terms of the enthalpy of fusion for 

the solute rather than the Gibbs function change. Fortunately, the Gibbs-Helmholtz equation 

gives us a means of making this change. Noting that 

 

(
𝜕 (
Δ𝐺
𝑇 )

𝜕𝑇
)

𝑝

=
Δ𝐻

𝑇2
 

 

Differentiation of the above expression for ln(xB) with respect to T at constant p yields 

 

(
𝜕 ln 𝑥𝐵
𝜕𝑇

)
𝑝
=
1

𝑅

Δ𝐻𝑓𝑢𝑠

𝑇2
 

 

Separating the variables puts this into an integrable form that can be used to see how solubility 

will vary with temperature: 

 

∫ 𝑑 ln 𝑥𝐵

ln 𝑥𝐵

0

=
1

𝑅
∫
Δ𝐻𝑓𝑢𝑠𝑑𝑇

𝑇2

𝑇

𝑇𝑓

 

 

So if the enthalpy of fusion is constant over the temperature range of Tf to the temperature of 

interest, 

 

ln 𝑥𝐵 =
Δ𝐻𝑓𝑢𝑠

𝑅
(
1

𝑇𝑓
−
1

𝑇
) 

 

And xB will give the mole fraction of the solute in a saturated solution at the temperature T. The 

value depends on both the enthalpy of fusion, and the normal melting point of the solute. 

 

Activity 
 

 The bulk of the discussion in this chapter dealt with ideal solutions. However, real 

solutions will deviate from this kind of behavior. So much as in the case of gases, where fugacity 

was introduced to allow us to use the ideal models, activity is used to allow for the deviation of 

real solutes from limiting ideal behavior. The activity of a solute is related to its concentration by 

 

𝑎𝐵 = 𝛾
𝑚𝐵
𝑚𝑜

 

 

where  is the activity coefficient, mB is the molaliy of the solute, and mo is unit molality.  The 

activity coefficient is unitless in this definition, and so the activity itself is also unitless. 

Furthermore, the activity coefficient approaches unity as the molality of the solute approaches 

zero, insuring that dilute solutions behave ideally. The use of activity to describe the solute 
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allows us to use the simple model for chemical potential by inserting the activity of a solute in 

place of its mole fraction: 

 

𝜇𝐵 = 𝜇𝐵
𝑜 + 𝑅𝑇 ln 𝑎𝐵 

 

The problem that then remains is the measurement of the activity coefficients themselves, which 

may depend on temperature, pressure, and even concentration. 

 

Activity Coefficients for Ionic Solutes 
 

 For an ionic substance that dissociates upon dissolving 

 

𝑀𝑋(𝑠)
𝐻2𝑂
→  𝑀+(𝑎𝑞) + 𝑋−(𝑎𝑞) 

 

the chemical potential of the cation can be denoted 𝜇+ and that of the anion as 𝜇−. For a solution, 

the total molar Gibbs function of the solutes is given by 

 

𝐺 = 𝜇+ + 𝜇− 

 

where 

 

𝜇 = 𝜇∗ + 𝑅𝑇 ln 𝑎 

 

where * denotes the chemical potential of an ideal solution, and a is the activity of the solute. 

Substituting his into the above relationship yields 

 

𝐺 = 𝜇+
∗ + 𝑅𝑇 ln 𝑎+ + 𝜇−

∗ + 𝑅𝑇 ln 𝑎−  
 

Using a molal definition for the activity coefficient 

 

𝑎𝑖 = 𝛾𝑖𝑚𝑖 
 

The expression for the total molar Gibbs function of the solutes becomes 

 

𝐺 = 𝜇+
∗ + 𝑅𝑇 ln 𝛾+𝑚+ + 𝜇−

∗ + 𝑅𝑇 ln 𝛾−𝑚− 

 

This expression can be rearranged to yield 

 

𝐺 = 𝜇+
∗ ++ 𝜇−

∗ + 𝑅𝑇 ln𝑚+𝑚− + 𝑅𝑇 ln 𝛾+𝛾− 

 

where all of the deviation from ideal behavior comes from the last term. Unfortunately, it 

impossible to experimentally deconvolute the term into the specific contributions of the two ions. 

So instead, we use a geometric average to define the mean activity coefficient, ±. 
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𝛾± = √𝛾+𝛾− 

 

For a substance that dissociates according o the general process 

 

𝑀𝑥𝑋𝑦(𝑠)
𝐻2𝑂
→  𝑥 𝑀𝑦+(𝑎𝑞) + 𝑦 𝑋𝑥−(𝑎𝑞) 

 

the expression for the mean activity coefficient is given by 

 

𝛾± = (𝛾+
𝑥𝛾−
𝑦)

1
𝑥+𝑦 

Debeye-Hückel Law 
 

 In 1923, Debeye and Hückel (Debye & Hückel, 1923) suggested a means of calculating 

the mean activity coefficients from experimental data. Briefly, they suggest that 

 

log 𝛾± = −
1.824 ∙ 106

(𝜀𝑇)
3
2

|𝑧+𝑧−|√𝐼 

 

where  is he dielectric constant of the solvent, T is the temperature in K, z+ and z- are the 

charges on the ions, and I is the ionic strength of the solution. I is given by 

 

𝐼 =
1

2

(𝑚+𝑧+
2 +𝑚−𝑧−

2)

𝑚𝑜
 

 

For a solution in water at 25 oC,  

 

log 𝛾± = −0.509|𝑧+𝑧−|√𝐼 
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Learning Objectives 
 

After mastering the material in this chapter, one will be able to 

 

1. Describe the thermodynamics of mixing and calculate H, S, and G or mixing for an 

ideal solution. 

2. Define chemical potential, and calculate its value as a function of pressure and 

composition. 

3. Derive expressions for the colligative properties and perform calculations using the 

relationships. 

4. Estimate the maximum solubility of a solute in a solvent based on the concept equality of 

chemical potential at saturation. 

5. Define fugacity and activity. 

6. Calculate the mean activity coefficients of ions in solution based on the ionic strength of 

the solution. 

Problems 
 

1. The compression factor (Z) for O2 at 200 K is measured to have the following values: 

 

p (atm) Z 

1.000 0.9970 

4.000 0.9880 

7.000 0.9788 

10.000 0.9700 

 

Using numerical integration, calculate the fugacity constant for O2 at 200 K from these 

data. 

 

2. The normal boiling point of ethanol is 78.4 oC. Its enthalpy of vaporization is 38.6 

kJ/mol. Estimate the vapor pressure of ethanol at 24.4 oC. 
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3. When 20.0 grams of an unknown nonelectrolyte compound are dissolved in 500.0 grams 

of benzene, the freezing point of the resulting solution is 3.77 °C. The freezing point of 

pure benzene is 5.444 °C and the cryoscopic constant (Kf) for benzene is 5.12 °C/m. 

What is the molar mass of the unknown compound? 

 

4. Consider a mixture of two volatile liquids, A and B. The vapor pressure of pure liquid A 

is 324.3 Torr and that of pure liquid B is 502.3 Torr. What is the total vapor pressure over 

a mixture of the two liquids for which xB = 0.675?  

 

5. Consider the following expression for osmotic pressure 

 

𝜋𝑉 = 𝑥𝐵𝑅𝑇 

 

where π is the osmotic pressure, V is the molar volume of the solvent, xB is the mole 

fraction of the solute, R is the gas law constant, and T is the temperature (in Kelvin). 

 

The molar volume of a particular solvent is 0.0180 L/mol. 0.200 g of a solute (B) is 

dissolved in 1.00 mol of the solvent. The osmotic pressure of the solvent is then 

measured to be 0.640 atm at 298 K. Calculate the molar mass of the solute. 

 

6. At 300 K, the vapor pressure of HCl(g) over a solution of HCl in GeCl4 are summarized 

in the following table. 

 

xHCl PHCl (kPa) 

0.005 32.0 

0.012 76.9 

0.019 121.8 

 

 Calculate the Henry’s Law constant for HCl based on these data. 

 

7. Consider the mixing of 1.00 mol of hexane (C6H12) with 1.00 mole of benzene (C6H6). 

Calculate H, S, and G of mixing, of the mixing occurs ideally at 298 K. 
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