Chapter 6: Putting the Second Law to Work

In the previous chapter, we saw that for a spontaneous process, ASuniv > 0. While this is a
useful criterion for determining whether or not a process is spontaneous, it is rather cumbersome,
as it requires one to calculate not only the entropy change for the system, but also that of the
surroundings. It would be much more convenient if there was a single criterion that would do the
job and focus only on the system. As it turns out, there is!

Free Energy Functions
Since we know that
ASyniv =0
for any natural process, and
ASyniv = ASgys + ASgyrr

all we need to do is to find an expression for ASsurr that can be determined by the changes in the
system itself. Fortunately, we have already done that! Recalling that at constant temperature

Qrev
AS = —
T
and at constant pressure
AH = q,

it follows that at constant temperature and pressure

AHgy

ASgyrr = — T

Substitution into the above equations yields an expression for the criterion of spontaneity that
depends only on variables describing the changes in the system!

AH
ASuniv = ASsys - %
So
AH
ASeys — —2 20
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Multiplying both sides by -T yields
AH —TAS <0

A similar derivation for constant volume processes results in the expression (at constant volume
and temperature)

AU —-TAS <0
The first expression is of grater use to chemists, as most of chemistry occurs at constant
pressure. For geologists, however, who are interested in processes that occur at very high
pressures (say, under the weight of an entire mountain) and expansion is not a possibility, the
constant volume expression may be of greater interest.

All of the above arguments can be made for systems in which the temperature is not
constant by considering infinitesimal changes. The resulting expressions are

dH —TdS <0 and dU—-TdS <0

The Gibbs and Helmholtz Functions
The fist expression suggests a very convenient thermodynamic function to help keep
track of both the effects of entropy and enthalpy changes. This function, the Gibbs function (or
Gibbs Free Energy) is defined by
G=H-TS
A change in the Gibbs function can be expressed
AG = AH — A(TS)
Or at constant temperature
AG = AH — TAS
And the criterion for a process to be spontaneous is the AG < 0. As such, it should be clear
spontaneity is not merely a function the enthalpy change (although exothermic processes tend to

be spontaneous) but also a function of the entropy change, weighted by the temperature. Going
back to an earlier example,

NaOH(s) — Na*(aq) + OH™ (aq) AH <0
2
NaHCO5(s) — Na*(aq) + HCO5™ (aq) AH >0
2
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It is easy to see why both processes are spontaneous. In the first case, the process is exothermic
(favorable) and proceeds with an increase in entropy (also favorable) due to the formation of
fragments in the liquid phase (more chaotic) from a very ordered solid (more ordered). The
second reaction is endothermic (unfavorable) but proceeds with an increase in entropy
(favorable). So, so long as the temperature is high enough, the entropy term will overwhelm the
enthalpy term and cause the process to be spontaneous.

The conditions for spontaneous processes at constant temperature and pressure can be
summarized in the following table.

AH AS Spontaneous?

>0 >0 Athigh T
>0 <0 AtnoT
<0 >0 Atall T
<0 <0 Atlow T

Similarly to the Gibbs function, the Helmholtz function is defined by
A=U-TS

and provides another important criterion for spontaneous processes at constant value and
temperature. At constant temperature, the Helmholtz function can be expressed by

AA = AU —TAS
Based on similar arguments used for the Gibbs function, the Helmholtz function also can be used

to predict which processes will be spontaneous at constant volume and temperature according to
the following table.

>0 >0 Athigh T

>0 <0 AtnoT
<0 >0 Atall T
<0 <0 Atlow T

Calculating AG for Reactions

Much like in the case of enthalpy (and unlike entropy), free energy functions do not have
an unambiguous zero to the energy scale. So, just like in the case of enthalpies of formation, by
convention, the standard free energy of formation (AG+°) for elements in their standard states is
defined as zero.
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This allows for two important things to happen. First, AG° can be measured and
tabulated for any substance (in principle, at least.) AG¢° is determined to be AGxn° for the
reaction that forms one mole of a compound from elements in their standard states (similarly to
how AH¢ is defined.)

Secondly, tabulated AG+° can be used to calculate standard reaction free energies (AGxn°)
in much the same way as AHr° is used for reaction enthalpies.

Example 6.1
Given the following data at 298 K, calculate AG° at 298 K for the following reaction:

C2Ha(g) + H2(g) = C2He(Q)

Substance AGr (kJ/mol

C2Ha4(Q) 68.4
C2He(Q) -32.0

Solution:
The AG¢° values can be used to calculate AG® for the reaction in exactly the same method as AH¢°
can be used to calculate a reaction enthalpy.
AG® = (1 mol)(-32.0 kJ/mol) - (1 mol)(68.4 kJ/mol)
AG° =100.4 kJ

Note: Hz(g) is not included in the calculation since AG¢° for Hz(g) is O since it is an element in its
standard state.

Combining the First and Second Laws

Modeling the dependence of the Gibbs and Helmholtz functions behave with varying
temperature, pressure, and volume is fundamentally useful. But in order to do that, a little bit
more development is necessary.

To see the power and utility of these functions, it is useful to combine the First and
Second Laws into a single mathematical statement. In order to do that, one notes that since

dq
ds =—

for a reversible change, it follows that
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dq = TdS
And since
dw = —pdV

for a reversible expansion in which only p-V works is done, it also follows that (since dU =
dq + dw)

dU = TdS — pdV
This is an extraordinarily powerful result. This differential for dU can be used to simplify the

differentials for H, A, and G. But even more useful are the constraints it places on the variables
T, S, p, and V due to the mathematics of exact differentials!

Maxwell Relations

The above result suggests that the natural variables of internal energy are S and V (or the
function can be considered as U(S, V)). So the total differential (dU) can be expressed:

= (20 as+ (2 av
—\as/, v/

Also, by inspection (comparing the two expressions for dU) it is apparent that

&),=7 and &)=

But the value doesn’t stop there! Since dU is an exact differential, the Euler relation must hold

7(5s),), =l G,

By substituting the previous statements for (Z—Z) and (Z—g) , We see that
14 S

7ol =[»),

or

(&), =~ ),
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This is an example of a Maxwell Relation. These are very powerful relationship that allows one
to substitute partial derivatives when one is more convenient (perhaps it can be expressed
entirely in terms of o and/or k1 for example.)

A similar result can be derived based on the definition of H.
H=U+pV
Differentiating (and using the chain rule on d(pV) yields
dH = dU + pdV + Vdp

Making the substitution using the combined first and second laws (dU = TdS — pdV) for a
reversible change involving on expansion (p-V) work

dH = TdS - pdV + pdV + Vdp
This expression can be simplified by canceling the pdV terms.
dH = TdS + Vdp

And much as in the case of internal energy, this suggests that the natural variables of H are S and
p. Or

dH—(aH) ds+(aH> d
~ 35/, ap/, P

where

@1 w (@)

It is worth noting at this point that since (‘;—Z) =T and (3—?) = T that

|4 p

&), - (),

But also, since the Euler Relation must also hold
0 (aH) l | (aH) l
op\aS/, < 0S\dp/ )
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So
(OT) _ (6V>
ap/.  \as/,

This is the Maxwell relation on H. Maxwell relations can also be developed based on A and G.
The results of those derivations are summarized in the table below.

Function Differential Natural Variables Maxwell Relation
U dU = TdS - pdV S,V (aT) = (ap>
- P ’ vl \as/,
M dH=Tas Ve s @) - (&)
= oS T VP P ap). ~ \as),
dp as
A A =-pdV - SdT V, T —) ==
dA = -pdV - Sd ’ (ar)v (av)T
4G = Vd d (6V> B (65)
G G=Vdp-SdT p, T an— o),

The Maxwell relations are extraordinarily useful in deriving the dependence of thermodynamic
variables on the state variables of p, T, and V.

Example 6.2
Show that

<0U) _ a
vl kr p
Solution:

Start with the combined first and second laws:
dU = TdS - pdV

Divide both sides by dV and constraint to constant T:

v _ ds dv
avl, = “avl, ~Pavl,
Noting that
du ou ds aS dv
Tl (E)T’ET‘(E)T’a“dﬁT— 1
The result is
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(au) _ T(@S)
av), - "\av), " P

Now, employ the Maxwell relation on A

G7), - G,

to get

57),= 7P
av), - "\ar), " P

( )V T

It is apparent that

(OU) _Ta
wvl)r  kp p

Note: How cool is that? This result was given without proof in chapter 4, but can now be proven
analytically using the Maxwell Relations!

A, G and Maximum Work

The functions A and G are oftentimes referred to as free energy functions. The reason for
this is that they are a measure of the maximum work (in the case of AA) or non p-V work (in the
case of AG) that is available from a process. To show this, consider the total differentials.

First, consider the differential of A.
dA = dU - TdS - SdT

Substituting the combined first and second laws for dU, but expressing the work term as dw,
yields

dA = TdS —dw - TdS - SdT

And cancelling the TdS terms gives
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dA = dw - SdT
or at constant temperature (dT = 0)
dA = dw
Since the only assumption made here was that the change is reversible (allowing for the
substitution of TdS for dg), and dw for a reversible change is the maximum amount of work, it

follows that dA gives the maximum work that can be produced from a process at constant
temperature.

Similarly, a simple expression can be derived for dG. Starting from the total differential
of G.

dG = dU + pdV + Vdp - TdS - SdT

Using an expression for dU = dg + dw, where dg = TdS and dw is split into two terms, one
(dwpv) describing the work of expansion and the other (dwe) describing any other type of work
(electrical, stretching, etc.)

dU = TdS + dwyy + dw,
dG can be expressed as

dG = TdS — pdV + dw_e + pdV + Vdp - TdS - SdT

Cancelling the TdS and pdV terms leaves

dG = dw_e + Vdp - SdT
So at constant temperature (dT = 0) and pressure (dp = 0),

dG = dw,

This implies that dG gives the maximum amount of non p-V work that can be extracted from a
process.

This concept of dA and dG giving the maximum work (under the specified conditions) si
where the term “free energy” comes from, as it is the energy that is free to do work in the
surroundings. If a system is to be optimized to do work in the soundings (for example a steam
engine that may do work by moving a locomotive) the functions A and G will be important to
understand. It will, therefore, be useful to understand how these functions change with changing
conditions, such as volume, temperature, and pressure.
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Volume Dependence of A

If one needs to know how the Helmholtz function changes with changing volume at
constant temperature, the following expression can be used:

AA = f " (aA) dv
v, \av/y

But how does one derive an expression for (g—ﬁ) ? This is a fairly straight forward process that
T

begins with the definition of A:
A=U-TS
Differentiating (and using the chain rule to evaluate d(TS) yields
dA = dU - TdS - §dT
Now, it is convenient to use the combined first and second laws
dU = TdS - pdV

which assumes 1) a reversible change and 2) only pV work is being done. Substituting this into
the expression above yields

dA = TdS - pdV - TdS - SdT
Canceling the TdS terms gives the important result
dA = —pdV - SdT

The natural variables of A are therefore V and T! So the total differential of A is conveniently
expressed as

dA = (aA) v + (aA) dT
B T/,

And by inspection, it is clear that

&)y =t (5),=-s

And so, one can evaluate
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as

V2
AA=—f pdV

V1

If the pressure is independent of the temperature, it can be pulled out of the integral. Otherwise,
the temperature dependence of the pressure must be included. Fortunately, this is easy if the
substance is an ideal gas (or if some other equation of state can be used, such as the van der
Waals equation.)

Example 6.3

Calculate AA for the isothermal expansion of 1.00 mol of an ideal gas from 10.0 L to 25.0 L at
298 K.

Solution:
For an ideal gas,

nRT
P = 7
So
<6A) B
av), - P
becomes
((’)A) _ nRT
vl VvV
And so
V2 19A
AA =f (—) av
v, avV/y
becomes
V2 qy
AA = —nRTf —dT
n V
1
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or

AA = —nRT1 (VZ)
= n n V

1

Substituting the values from the problem

25.0 L)

AA = —(1.00 mol) (8.314m0’ )(298 K)ln(lOOL

LK

AA =—2270]

But further, it is easy to show that the Maxwell relation that arises from the simplified expression

This particular Maxwell relation is exceedingly useful since one of the terms, namely(g—i) :
14

depends only on p, V, and T. As such it can be expressed in terms of our old friends, o and «!
(6p> o«
oT 1%4 N Kt

Pressure Dependence of G

The pressure and temperature dependence of G is also easy to describe. The best starting
place is the definition of G.

G=U+pV-TS
Taking the differential yields
dG = dU + pdV + Vdp - TdS - SdT

The differential can be simplified by substituting the combined first and second law statement for
dU (consider a reversible process and p-V work only).

dG = TdS - pdV + pdV + Vdp — TdS — SdT
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Canceling the Tds and pdV terms leaves
dG =Vdp - SdT

This suggests that the natural variables of G are p and T. So the total differential dG can also be
expressed

i6=(2) apr (Z) ar
~\op), P \or),

And by inspection, it is clear that

@) =v wa () =

It is also clear that the Maxwell relation on G is given by
<6V) B (65)
or/,  \ap/,

which is an extraordinarily useful relationship, since one of the terms is expressible entirely in
terms of measurable quantities!

<6V) _y
ar), ¢
The pressure dependence of G is given by the pressure derivative at constant temperature
(66) _v
op/

which is simply the molar volume. For a fairly incompressible substance (such as a liquid or a
solid) the molar volume will be essentially constant over a modest pressure range.

Example 6.4
The density of gold is 19.32 g/cm?. Calculate AG for a 1.00 g sample of gold when the pressure
on it is increased from 1.00 atm to 2.00 atm.

Solution:
The change in the Gibbs function due to an isothermal change in pressure can be expressed as

so=["(25) a
= T b
P1 ap

T
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And since (Z—Z) =V, the molar volume
T

Assuming that the molar volume is independent or pressure over the stated pressure range, AG
becomes

AG = V(p;- p1)
So, the molar change in the Gibbs function can be calculated by substituting the relevant values.

8.314]
0.08206 atm L

AG = cm®  197.0g L
- \1932g mol 1000 cm3
1.033 ]

> (2.00 atm - 1.00 atm) -

Temperature Dependence of A and G
In differential form, the free energy functions can be expressed as
dA = —pdV - SdT and dG = Vdp - SdT

So by inspection, it is easy to see that

&), =-s &), =5

And so, it should be fairly straightforward to determine how each changes with changing
temperature:

T;

T2 19A
AAzf (—) de—f Sdr
r, \0T/y T

T2 /106G T;
AGZf (—) dT=—f Sdr
T T/, T

But the temperature dependence of the entropy needed to be known in order to evaluate the
integral. A convenient work-around can be obtained starting from the definitions of the free
energy functions.

A=U-TS and G =H-TS
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Dividing by T yields
=Y 5 and S-H_g
T T

Now differentiating each expression with respect to T at constant V or p respectively yields

Or differentiating with respect to 1/T provides a simpler form that is mathematically equivalent:

a4/T)\ _ aG/T)\ _
(AT)V—U and (GT)p—H

a(1/T) o(1/T)

Focusing on the second expression (since all of the arguments apply to the first as well), we see a
system that can be integrated. Multiplying both sides by d(1/T) yields:

=

And integration, assuming the enthalpy change is constant over the temperature interval yields

[Fa(F)= o[ a(y

Alr, AGr, _ AH(l_l>
T3 T T, T,

This is the Gibbs-Helmholtz equation, and can be used to determine how AG changes with
changing temperature. The equivalent equation for the Helmholtz function is

T, T

AAr, AAg, (1 1)
a T, T,

Example 6.5.
Given the following data at 298 K, calculate AG at 500 K for the following reaction:
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CHa(g) + 2 O2(g) > CO2(g) + H20(9)

Compound  AG¢ (kJ/mol)  AH® (kJ.mol

CHa(g) -50.5 -74.6
CO2(q) -394.4 -393.5
H20(q) -228.6 2418

Solution:
AH and AG2gs k and can be calculated fairly easily. It will be assumed that DH is constant over
the temperature range of 298 K — 500 K.
AH = (1 mol)(-393.5 kJ/mol) + (2 mol)(-241.8 kd/mol) — (1 mol)(-74.5 kd/mol) = -820.6 kJ
AG298 = (1 mol)(-394.4 kJ/mol) + (2 mol)(-228,6 kJ/mol) — (1 mol)(-50.5 kJ/mol) = -801.1 kJ

So using
AGTZ _%_ AH(l—l)
T Ty I, T

With the data just calculated gives

AGSOO _8011 k]
500 K 298 K

1 1
= (SAUBLY) (500 K~ 298 K)

AGSOO == _7879 k]

Note: AG became a little bit less negative at the higher temperature, which is to be expected for a
reaction which is exothermic. An increase in temperature should tend to make the reaction less
favorable to the formation of products, which is exactly what is seen in this case!

When Two Variables Change at Once

So far, we have derived a number of expressions and developed methods for evaluating
how thermodynamic variables change as one variable changes while holding the rest constant.
But real systems are seldom this accommodating. For example, a piece of metal (such as a
railroad rail) left in the sun will undergo both an increase in temperature and an expansion due to
the absorption of energy from sunlight. So both T and V are changing at the same time! If the
change in a thermodynamic variable (such as G) is needed, contributions from both changes are
required to be taken into account. We’ve already seen how to express this in terms of a total
differential.
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16 = (22) av+ () ar
—\av/; T/,

Fortunately, G (like the other thermodynamic functions U, H, S, and A) is kind enough to
be a state variable. This means that we can consider the changes independently and then simply
add the results. Another way to think of this is that the system may follow either of two pathways
to get from the initial conditions to the final conditions:

Pathway I:
1. An isothermal expansion from V1 to V: at T; followed by
2. An isochoric temperature increase from Ty to T2 at V2

Pathway 2:
1. Anisochoric temperature increase from T1 to T» at V1 followed by
2. And isothermal expansion from Vi to V; at T

And since G has the good sense to be a state variable, the pathway connecting the initial and
final states is unimportant. We are free to choose any path that is convenient to calculate the
change.

Example 6.6
Calculate the entropy change for 1.00 mol of a monatomic ideal gas (Cv = 3/2 R) expanding
from 10.0 L at 273 K to 22.0 L at 297 K.

Solution:
If one considers entropy to be a function of temperature and volume, one can write the total
differential of entropy as

is = (Z) ar +(Z) av
aT/, v,
and thus
T2 ,9S 2 19S
as = f (O_T)VdT + f (W)T‘“’

The first term is the contribution due to an isochoric temperature change:

851 = [ (2 ar
T1-T, — o 6T v

nCy
= | TZgr
I

T
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v
=nclyln T1
) 3 J 297 K
= (1.00 770[) (E 8.314 molK> In (273 K>

The second term is the contribution due to an isothermal expansion:

2 13S
(52) av
T

A, =f v

£t

From the Maxwell relation on A

SO

AS = fVZ (6p) av
VioV, — . 6T v

_jvz ("R) dv
vy, \V

= nRin(g)
=n n Vl

= (1.00 l)(8314 J )1 (22'0L>
=\ ]mo P ol k) T\10.01L

= 6.56—
K

And the total entropy change is

AStOt = ASTl—)TZ + ASV]_—)VZ
J J
= 1.051=+ 6.56—
] K T K
= 7.61—
K

Deriving an expression for a partial derivative.
Partial Derivative Transformation Type 11

Thermodynamics involves many variables. But for a single component sample of matter, only
two state variables are needed to describe the system and fix all of the thermodynamic properties
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of the system. As such, it is conceivable that two functions can be specified as functions of the
same two variables. In general terms:

z(X,y) and w(X, Y)

So an important question that can be answered is, “What happens to z if w is held constant but x
is changed?” To explore this, consider the total differential of z:

p _(62) p +(62) p
= \ox), T Gy)

But z can also be considered a function of x and w(x, y). This implies that the total differential

And these two total differentials must be equal to one another!

(62) P +<az) P _(aZ) p +(aZ) p
(')xyx nyy_ Oxwx anW

If we constrain the system to a change in which w remains constant, the last term will vanish

since dw = 0.
(62) dx + (62) dy = (62) J
ax), T \ay) T \ox),

But also, since w is a function x and y, the total differential for w can be written

4 _((’)W)d +(6W)d
Y= \ax ), T \ay)

And it too must be zero for a process in which w is held constant.

0_(6w> 4 +((’)W)d
~ \ax /), T \By)

From this expression, it can be seen that

wr=-(G), &),
Y= " \ox/, \ow/), ™
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Substituting this into the previous expression, yields

3,2+ ) [- 6D, 32), 2= (G2,

which simplifies to

(62) P (62) (6w> dx = <az> P
axyx awxaxyx_ 6xwx

So for dx # 0, implies that

), - Go). G, - @),

or

), = G+ o). G2,

As with partial derivative transformation types | and 11, this result can be achieved in a formal,
albeit less mathematically rigorous method.

Consider z(x, w). This allows us to write the total differential for z:

p _(62) p +(az>d
Z= axwx awxw

Now, divide by dx and constrain to constant y.

_ (62) dx N (82) dw
-~ \ox/,, dx ow/, dx|,,
Noting that dx/dx = 1 and converting the other ratios to partial derivatives yields
(62) _ (62) N (62) (aw>
ox/,  \ox/,, \ow/,\ox/,
which agrees with the previous result! Again, the method is not mathematically rigorous, but it

works so long as w, X, y, and z are state functions, so that the total differentials dw, dx, dy, and
dz are exact.

dz

dx|y |y
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The difference between Cp and Cy

Constant volume and constant pressure heat capacities are very important in the
calculation of many changes. The ratio Cp/Cv =y appears in many expressions as well (such as
the relationship between pressure and volume along an adiabatic expansion.) It would be useful
to derive an expression for the difference C, — Cv as well. As it turns out, this difference is
expressible in terms of measureable physical properties of a substance, such as o, «t, p, V, and T.

In order to derive an expression, let’s start from the definitions.

Cp (Z—I;)p and Cy = (Z—Z)V

The difference is thus

(57), - Gr),

In order to evaluate this difference, consider the definition of enthalpy:
H=U+pV
Differentiating this yields
dH = dU + pdV + Vdp
Dividing this expression by dT and constraining to constant p gives

dH| _dv)  dv)dp
—_— [ — p_ —_—
darl, ~arl, " “arl,™ " arl,

The last term is kind enough to vanish (since dp = 0 at constant pressure). After converting the
remaining terms to partial derivatives:

(6H> _ <au) N (6V>
ar),  \ar/, " P\ar/,
This expression is starting to show some of the players. For example,
OH av
(6_T)p = Cp and (B_T)p =Va

So
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ou
Cp = (G_T)p +pVa

But what is (Z—:) ? In order to evaluate it, first consider U(V, T). Then the total differential du
14

can be expressed

w=(2) a+(2) ar
~\av/r T/,

Dividing by dT and constraining to constant p will generate the partial derivative we wish to
evaluate:

du _((’)U) av +(6U) dT
dTl, —\av/rdrl, ~\orT/,dTl,

The last term will become unity, so after converting to partial derivatives, we see that

), = ), &), + ),

(This, incidentally, is an example of partial derivative transformation type IIl.) Now we are
v

aT) = Va. So the expression can be

getting somewhere! The last term, (Z—:) ,is Cv. Also, (
14 p

rewritten

<au) _(6U> Va+C
ar), \av), “ T

, . U :
If we can find an expression for (5) we are almost home free! Fortunately, that is an easy
T

expression to derive. Begin with the combined expression of the first and second laws:
dU = TdS - pdV
Now, divide both sides by dV and constrain to constant T.

ds

rdv

dv
. Pav

du
dv

T

The last term is unity, so after conversion to partial derivatives, we see
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(au) _7 (65)
av), = "\av), P
A Maxwell relation (specifically the Maxwell relation on A) can be used to substitute for

&),
@), = G,

N . . ] .
Substituting this into the expression for (%) yields
T

au ap
(57), =7 v, -
ov)r oT/y

. d
And since (—p) =—
oT Vv

<6U> _Ta
vl  kr P

o . . au
Now, substituting this into the expression for (a_T) , we get
p

(au) —[T“ ]V +C
oT/, | kr pjraTtv
_TVa2

= —pV C
PR pVa + Cy

This can now be substituted into the expression

C—(6U>+V
»= \ar), " P'

yields

TVa?
Cp = » —pVa+Cy +pVa
T

The pVa terms will cancel. And subtracting Cv from both sides gives the desired result:
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TV a?

Kt

Cp_CV =

And this is a completely general result since the only assumptions made were those that
allowed us to use the combined first and second laws in the form dU = TdS - pdV. That
means that this expression can be applied to any substance whether gas, liquid, animal,
vegetable, or mineral. But what is the result for an ideal gas?

Since we know that for an ideal gas

and Ky =

1
a==
T

Substitution yields

hﬂ

<
VoS
~| =
N—"

Cp— Cy = —
()
_pv

T
=R

So for an ideal gas, Cp - Cv = R. That is good to know, no?

Example 6.7.
Derive the expression for the difference between C, and Cv by beginning with the definition of

H, differentiating, dividing by dV (to generate the partial derivative definition of Cv). In this

approach, you will need to find expressions for (a—H) ,and (a—U) , and also utilize the Maxwell-
aT/y ap T

Relation on G.

Solution:
Begin with the definition of enthalpy.

H=U+pV
Differentiate the expression.
dH = dU + pdV + Vdp

Now, divide by dV and constrain to constant T (as described in the instructions) to generate the
partial derivative definition of Cv.

Thermochemistry and Chemical Kinetics: Putting the Second Law to Work © 2021 Patrick E. Fleming -
Available under Creative Commons Attribution-Noncommercial-Share Alike license 4.0 (CC BY-NC-SA 4.0)

150



https://creativecommons.org/licenses/by-nc-sa/4.0/

Chapter 6 — Putting the Second Law to Work

dH) _du) v dp

arl, ~arl, " Parl, " " arl,
oH U ap
e, =, )
ar), —\ar), T " \ar),

Now what is needed is an expression for (Z—Z) . This can be derived from the total differential
|4
for H(p, T) by dividing by dT and constraining to constant V.

dH—(aH) d +(6H> aT

~\op), P T \or),
_(6H) dp +(0H) dT

vy \op/,dTl, \oT/,dT

Gr), = &), @), + 7),

This again is an example of Partial Differential Transformation Type Ill. To continue, we
need an expression for (Z—’Z) . This can be quickly generated by considering the total differential
T

dH
dT

%4

of H(p,S), its natural variables:
dH = TdS + Vdp
Dividing by dp and constraining to constant T yields

dH
dp

ds

d
=T— p
r dp

V—
+ T

T

<6H> _T<65> e
op/; op/

Using the Maxwell Relation on G, we can substitute

(1), = &),

T

So

<0H> B T(OV) e
dp/,  \aT/,
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Now, substitute this back into the expression for (Z—I;)
|4

(), =[G, ++] 6P, &),
(), =), G, +v 6B, + 7,

This can now substituted for the right-hand side of the initial expression for (Z—I;) :

%4
avy\ (op dp oH\  (0U 6p>
T (aT)p <6T)V +V <6T)V T (aT)p B (6T>V v <6T v

The V (Z—?) terms are kind enough to cancel one another. The expression can then be rearranged

|4
to yield
), -G, =7 Gr), G
or/, \ar/,  \or/,\aT/,
Or
TVa?
Cp - CV == KT
which might look familiar!
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Learning Objectives

After mastering the material presented in this chapter, one will be able to:

1. Define the free energy functions A and G, and relate changes in these functions to
the spontaneity of a given process and constant volume and pressure respectively.

2. Use the definitions of entropy and reversible work of expansion to write an equation
that combines the first and second laws of thermodynamics.

3. Utilize the combined first and second law relationship to derive Maxwell Relations
stemming from the definitions of U, H, A, and G.

4, Utilize the Maxwell Relations to derive expressions that govern changes in
thermodynamic variable as systems move along specified pathways (such as
constant temperature, pressure, volume, or adiabatic pathways.)

5. Derive and utilize an expression describing the volume dependence of A.

6. Derive and utilize an expression describing the pressure dependence of G.

7. Derive and utilize expressions that describe the temperature, dependence of A and
G.

8. Derive an expression for, and evaluate the difference between Cp and Cv for any
substance, in terms of T, V, o, and «r.

Problems
1. Using data found at
http://chem.libretexts.org/Reference/Reference Tables/Thermodynamics Tables/T1%3A
Standard Thermodynamic_Quantities, calculate the standard reaction Gibbs functions
(AG®) for the following reactions at 298 K.
a. CHsCH20H(I) + 3 O2(g) = 2 CO2(g) + 3 H20(1)
b. CeH1206(S) + 6 O2 = 6 CO2(g) + 6 H20(1)
c. 2POCIs(l) > 2 PCIs(l) + O2(g)
d. 2 KBr(s) + Clz(g) = 2 KCI(s) + Bra()
e. SiHa(g) + 2 Cl(g) = SiCla(l) + 2 H2(g)
2. Estimate AG at 1000 K from its value at 298 K for the reaction
C(s) + 2 Hz(g) = CHa(9) AG =-50.75 kJ at 298 K

3. The standard Gibbs function for formation (AG+°) of PbO2(s) is -217.4 kJ/mol at 298 K.
Assuming Oz is an ideal gas, find the standard Helmholtz function for formation (AAf°)
for PbO; at 298K.

4. Calculate the entropy change for 1.00 mol of an ideal monatomic gas (Cv = 3/2 R)

undergoing an expansion and simultaneous temperature increase from 10.0 L at 298 K to
205.0 L at 455 K.
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5. Consider a gas that obeys the equation of state

nRT
V —nb

p:

a. Find expressions for o and k1 for this gas.
b. Evaluate the difference between Cp and Cy for the gas.

6. Show that (aa%) = 0 for an ideal gas.
T

7. Derive the thermodynamic equation of state

(Z—Z) =V({1-Ta)

8. Derive the thermodynamic equation of state

((’)U) _7 a
aV T_ Kr p

9. The “Joule Coefficient” is defined by

_ (GT)
b=\av),

Show that

_1( Ta:)
.U]—CV p Ky

and evaluate the expression for an ideal gas.

10. Derive expressions for the pressure derivatives (Z_ﬁ) of U, H, A, G, and S at constant
T

temperature in terms of measurable properties. (The derivation of (a—H) was done in

apT

problem 7.) Evaluate the expressions for (Z—Z) , (Z—Z) ,and (g—z) for a van der Waals
T T T

gas.
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11. Derive expressions for the volume derivatives (Z—i) of U, H, A, G, and S at constant
T
temperature in terms of measurable properties. (The derivation of (3—5) was done in
T

problem 8.) Evaluate the expressions for (Z—’;) and (g—);) for a van der Walls gas.
T T

12. Evaluate the difference between C, and Cy for a gas that obeys the equation of state

_ nRT
" V-—nb

p

13. The adiabatic compressibility (ks) is defined by

_ 1(0V)
=Ty ap/

Show that for an ideal gas,
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