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Chapter 13: The Molecular Partition Function 
 

 In the previous treatments of thermodynamics from the preceding chapters, we have 

focused on the flow of energy through a system. This approach is sometimes referred to as 

Classical Thermodynamics or the “caloric approach”. In this chapter, we will use the quantum 

properties of molecules to develop a statistical description of thermodynamics, based on the 

average behavior of several molecules in a distribution of quantum states (generally determined 

by the temperature of the sample.) 

 The statistical approach is based on the distribution of energy in a system of molecules 

(or ions in a crystal matrix, or whatever microscopic description of matter is appropriate for a 

given sample.) For example, Entropy is a measure of the distribution of energy within a sample 

of matter. However, in that sample, one molecule may be storing a great deal of kinetic energy 

in the form of molecular rotation as it tumbles through space, while another might be storing a 

dynamic combination of both kinetic and potential energy in the form of molecular vibration. 

 In order to broach the topic of Thermodynamics from the statistical angle, we must first 

get  a handle on how molecules can store energy withing a sample of matter. The simplest case 

will be the gas phase of matter, since molecules in the gas phase are not hindered in their 

motions (except through collisions!), so we will begin there. 

 

Quantum Levels 
 Ever since Niels Bohr first explained the emission spectrum of hydrogen with his 

simplistic model of the atom [1] [2], it has been clear that some treatment of the quantum nature 

of small particles would be necessary to describe matter in nature. Quantum Theory wasn’t just 

for light anymore! 

 What the quantum theory tells us about atoms and molecules is that they can be viewed 

as having specific energy levels. Let’s call these 1, 2, …, N. Because the total energy of a set 

of Ntot molecules must be a constant, 

 

∑ 𝑁𝑖  𝜀𝑖

𝑖

= 𝐸𝑡𝑜𝑡 

 

where 

 

∑ 𝑁𝑖

𝑖

= 𝑁𝑡𝑜𝑡 

 

The Boltzmann Distribution tells us that the fraction of molecules (Ni/Ntot) occupying a particular 

energy level (i) is given by 
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Temperature and the Maxwell-Boltzmann Distribution 
Using the Maxwell distribution of velocities, Boltzmann derived an expression for the 

distribution of kinetic energies [3]. The Maxwell-Boltzmann distribution is derived by making 

the assumption that  

 

− log (
𝑁𝑖

𝑁𝑡𝑜𝑡
) ∝

𝑑𝑖  𝜖𝑖

𝑇
 

 

where Ni/Ntot gives the fraction of molecules in a sample with energy i, and T is the temperature 

of the sample.  

 

The Molecular Partition Function 
The constant of proportionality, it turns out, is a combination of 1/kB and q, the 

molecular partition function. The molecular partition function, q, is given by 

 

𝑞 = ∑ 𝑑𝑖 𝑒
−

𝜀𝑖
𝑘𝐵𝑇

𝑖

 

 

The molecular partition function can be used to calculate thermodynamic functions, such as 

entropy, heat capacity, and even equilibrium constants for reactions involving the compound of 

interest (although for these, one must also determine other molecular partition functions as 

determined by the stoichiometry of the particular reaction of interest. 

 

Internal Energy 
 The Internal Energy of a sample of molecules in the gas phase is directly related to the 

molecular partition function. Consider that the Internal Energy (E) of N of gas particles is given 

by 

 

𝐸(𝑇) = ∑ 𝑁𝑖𝜀𝑖

𝑖

 

 

where  

 

∑ 𝑁𝑖

𝑖

= 𝑁 

 

But, based on the molecular partition function, we know that 

 

𝑁𝑖

𝑁
=

𝑑𝑖𝑒
−
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so 

https://creativecommons.org/licenses/by-nc-sa/4.0/


Thermochemistry and Chemical Kinetics: The Molecular Partition Function © 2021 Patrick E. Fleming – 
Available under Creative Commons Attribution-Noncommercial-Share Alike license 4.0 (CC BY-NC-SA 4.0) 

303 

 

 

𝑁𝑖 =
𝑁

𝑞
𝑑𝑖𝑒

−
𝜀𝑖

𝑘𝐵𝑇 

 

Plugging this into the expression for the internal energy, produces 

 

𝐸(𝑇) =
𝑁

𝑞
∑ 𝜀𝑖  𝑑𝑖𝑒

−
𝜀𝑖

𝑘𝐵𝑇

𝑖

 

 

Here, it is useful to note that 

 
𝑑𝑞

𝑑 (
1

𝑘𝐵𝑇
)

=
𝑑

𝑑 (
1

𝑘𝐵𝑇
)

𝑑𝑖 𝑒
−

𝜀𝑖
𝑘𝐵𝑇 = −𝜀𝑖 𝑑𝑖 𝑒

−
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That means that the preceding equation can be rewritten  

 

𝐸(𝑇) = −
𝑁

𝑞

𝑑𝑞

𝑑 (
1

𝑘𝐵𝑇
)
 

 

Noting that the Internal energy is generally a function of both temperature and volume, the 

derivative should be a partial derivative with the volume held constant. So after accounting for 

any offsets, 

 

𝑈(𝑇) = 𝑈(0) −
𝑁

𝑞
(

𝜕𝑞

𝜕 (
1

𝑘𝐵𝑇
)

)

𝑉

 

 

And further noting that 

 
𝜕𝑞

𝑞
= 𝜕 ln 𝑞 

 

this can be simplified to 

 

𝑈(𝑇) = 𝑈(0) − 𝑁 (
𝜕 ln 𝑞

𝜕 (
1

𝑘𝐵𝑇
)
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Translation 
 Molecular translation has already been discussed in Chapter 2 of this text. The Maxwell 

Distribution of velocities (And the Maxwell-Boltzmann Distribution of kinetic energies) give 

a very good description of a thermalized sample of gas-phase molecules that agrees with 

experimental measurements. The Maxwell-Boltzmann distribution of velocities is given by 

 

𝑓(𝑣) = 4𝜋√(
𝑚

2𝜋𝑘𝐵𝑇
)

3

𝑣2𝑒
−

𝑚𝑣2

2𝑘𝐵𝑇 

 

where m gives the mass of a single molecule, kB is the Boltzmann constant.1  

 The kinetic energy of a single molecule would be given by 

 

𝐸𝑘𝑖𝑛 =
1

2
𝑚𝑣2 

 

Rotation 
 Molecular rotation, like translation, involves energy only of the Kinetic variety. The 

simplest Quantum Mechanical model of a rotating molecule is that or a rigid rotator, in which the 

energy is given by 

 

𝐸𝑟𝑜𝑡 = ℎ𝑐 𝐵 𝐽(𝐽 + 1) 

 

where h is Planck’s constant, c is the speed of light in a vacuum, B is a spectroscopic constant 

that is a property of a given molecule (𝐵 =
ℎ

8𝜋2𝑐𝜇𝑟2 for a diatomic molecule) that is related to its 

moment of inertia. And the fraction of molecules in a particular quantum state specified by the 

quantum number J within a thermalized sample is given by 

 

𝑁𝐽

𝑁𝑡𝑜𝑡
=

𝑑𝐽𝑒
−𝐵 𝐽(𝐽+1)

ℎ𝑐
𝑘𝐵𝑇

∑ 𝑑𝐽𝑒
−𝐵 𝐽(𝐽+1)

ℎ𝑐
𝑘𝐵𝑇

𝐽

 

 

We can replace the denominator on the right by the rotational partition function: 

 

𝑞𝑟𝑜𝑡 = ∑ 𝑑𝐽𝑒
−𝐵 𝐽(𝐽+1)

ℎ𝑐
𝑘𝐵𝑇

𝐽

 

 

which for a given molecule, at a given temperature, is a constant. 

 The degeneracy of a rotational energy level is given to 

 

 
1 kB = 1.38 x 10-23 J/K and is also given by R/NA, where R is the universal gas law constant, and NA is Avogadro’s 

Number. 
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𝑑𝐽 = (2𝐽 + 1) 

 

So the fractional population of a rotational level at a given temperature is given by 

 

𝑁𝐽

𝑁𝑡𝑜𝑡
=

(2𝐽 + 1) 𝑒
−𝐵 𝐽(𝐽+1)

ℎ𝑐
𝑘𝐵𝑇 

𝑞𝑟𝑜𝑡
 

 

This function is interesting because the population will increase as J increases due to the 

degeneracy, but decrease as J increases due to the exponential term. At low J, the degeneracy 

will win, whereas at higher J values, the exponential term will take over. This lea ds to the 

following kind of pattern for the rotational distribution in H35Cl at several temperatures. 

 

 
 

Determining the Rotational Temperature 
 One can determine the rotational temperature by fitting the population distribution to the 

distribution function, using the temperature as an adjustable parameter. Another method, albeit 

less precise, is to use the apparent population maximum [4]. The distribution maximum can be 

determined by differentiating the function with respect to J and setting the result equal to zero: 

 

𝑑

𝑑𝐽
[
(2𝐽 + 1) 𝑒

−𝐵 𝐽(𝐽+1)
ℎ𝑐

𝑘𝐵𝑇 

𝑞𝑟𝑜𝑡
] = 0 

 

Solving this for J yields 

 

𝐽𝑚𝑎𝑥 = √
𝑘𝐵𝑇
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Example: From the 298 K data in the figure above, Find the rotational temperature based on the 

J value for which the maximum population is observed. (B = 10.44 cm-1) 

 

Solution: The J value that shows the highest population is J = 3. So, using the above 

relationship: 

 

3 =  √
(1.38 ∙ 10−23 𝐽

𝐾) 𝑇

2(10.44 𝑐𝑚−1)(6.626 ∙ 10−34𝐽 𝑠) (2.998 ∙ 1010 𝑐𝑚
𝑠 )

−
1

2
 

 

Solving for T: 

 

(3 +
1
2)

2

(2)(10,44 𝑐𝑚−1)(6.626 ∙ 10−34𝐽 𝑠)(2.998 ∙
1010𝑐𝑚

𝑠 )

1.38 ∙ 10−23 𝐽/𝐾
= 368 𝐾 

 

Note: This temperature came out a bit high, because the maximum of the distribution function 

actually occurs between J=2 and J=3. 

 

 

 

Vibration 
 

𝑁𝑣

𝑁𝑡𝑜𝑡
=

𝑑𝑣𝑒
−𝜔𝑒(𝑣+

1
2

)
ℎ𝑐

𝑘𝐵𝑇

∑ 𝑑𝑣𝑒
−𝜔𝑒(𝑣+

1
2

)
ℎ𝑐

𝑘𝐵𝑇
𝑣

 

 

 

Electronic States 
 

 Expression Approx. Exp. Magnitude Estimate 

qelec 𝑞 = ∑ 𝑑𝑖𝑒
−

𝐸𝑖
𝑘𝐵𝑇

𝑖

 d0 1 

qvib 𝑞 = ∑ 𝑑𝑣𝑒
−

ℎ𝑐𝜔𝑒(𝑣+
1
2

)

𝑘𝐵𝑇

𝑣

 (1 − 𝑒
−

𝜔𝑒ℎ𝑐
𝑘𝐵𝑇 )

−1

 1-10 

qrot 𝑞 = ∑(2𝐽 + 1)𝑒
−

ℎ𝑐𝐵𝐽(𝐽+1)
𝑘𝐵𝑇

𝐽

 𝑘𝑇

𝐵
 100-1000 
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