Chapter 2: Gases

Gases comprise a very important type of system that can be modeled using
thermodynamics. This is true because gas samples can be described by very simple equations of
state, such as the ideal gas law. In this chapter, both macroscopic and microscopic descriptions of
gases will be used to demonstrate some of the important tools of thermodynamics.

The Empirical Gas Laws

A number of important relationships describing the nature of gas samples have been
derived completely empirically (meaning based solely on observation rather making an attempt
to define the theoretical reason these relationships may exist. These are the empirical gas laws.

Boyle’s Law

One of the important relationships governing gas samples that can be modeled
mathematically is the relationship between pressure and volume. Robert Boyle (1627 — 1691)
(Hunter, 2004) did experiments to confirm the observations of Richard Towneley and Henry
Powers to show that for a fixed sample of gas at a constant temperature, pressure and volume are
inversely proportional.

pV = const. or piVy =p,V,
Boyle used a glass u-tube that was closed at one end and with the lower portion filled with

mercury (trapping a sample of air in the closed end.) By adding mercury to the open end, he was
able to observe and quantify the compression of the trapped air.

Mercury column
increased
pouring mereury —— |

inat"T" \

Shorter leg
with scale

Initial level
of mercury

t
4

Figure 1. An apparatus similar to that used by Robert ‘
Figure 2. Robert Boyle (1627 - 1691)

Boyle. (Image taken from (Fazio, 1992))
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Charles’ Law

Charles’ Law states that the volume of a fixed sample of gas at constant pressure is
proportional to the temperature. For this law to work, there must be an absolute minimum to the
temperature scale since there is certainly an absolute minimum to the volume scale!

K = const. or ﬁ = Q

T T, Ty

The second law of thermodynamics also predicts an absolute minimum temperature, but that will
be developed in a later chapter.

Gay-Lussac’s Law

Gay-Lussac’s Law states that the pressure of a fixed sample of gas is proportional to the
temperature. As with Charles’ Law, this suggests the existence of an absolute minimum to the
temperature scale since the pressure can never be negative.

P

2 = const. or Ph_P2

T, Ty

Combined Gas Law

Boyle’s, Charles’, and Gay-Lussac’s Laws can be combined into a single empirical
formula that can be useful. For a given amount of gas, the following relationship must hold:

pvV

PV T.
= = const. or o P2l

Ty V2

Avogadro’s Law

Amedeo Avogadro (1776-1856) (Encycolopedia, 2016)
did extensive work with gases in his studies of matter. In the
course of his work, he noted an important relationship between
the number of moles in a gas sample. Avogadro’s Law
(Avogadro, 1811) states that at the same temperature and
pressure, any sample of gas has the same number of molecules
per unit volume.
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Figure 3. Amedeao Avogadro (1776 -

1856)

The Ideal Gas Law

The ideal gas law combines the empirical laws into a single expression. It also predicts
the existence of a single, universal gas constant, which turns out to be one of the most important
fundamental constants in science.

pV = nRT

The ideal gas law constant is of fundamental importance and can be expressed in a number of
different sets of units.

Value Units

0.08206 atm L molt K1
8.314 Jmolt K1
1.987 cal molt K1

The ideal gas law, as derived here, is based entirely on empirical data. It represents
“limiting ideal behavior.” As such, deviations from the behavior suggested by the ideal gas law
can be understood in terms of what conditions are required for ideal behavior to be followed (or
at least approached.) As such, it would be nice if there was a theory of gases that would suggest
the form of the ideal gas law and also the value of the gas law constant. As it turns out, the
kinetic molecular theory of gases does just that!

The Kinetic Molecular Theory of Gases

Theoretical models attempting to describe the nature of gases date back to the earliest
scientific inquiries into the nature of matter and even earlier! In about 50 BC, Lucretius, a
Roman philosopher, proposed that macroscopic bodies were composed of atoms that continually
collide with one another and are in constant motion, despite the observable reality that the body
itself is as rest. However, Lucretius’ ideas went largely ignored as they deviated from those of
Aristotle, whose views were more widely accepted at the time.

In 1738, Daniel Bernoulli (Bernoulli, 1738) published a model that contains the basic
framework for the modern Kinetic Molecular theory. Rudolf Clausius furthered the model in
1857 by (among other things) introducing the concept of mean free path (Clausius, 1857). These
ideas were further developed by Maxwell (Maxwell, Molecules, 1873). But, because atomic
theory was not fully embraced in the early 20" century, it was not until Albert Einstein published
one of his seminal works describing Brownian motion (Einstein, 1905) in which he modeled
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Chapter 2 - Gases

matter using a kinetic theory of molecules that the idea of an atomic (or molecular) picture really
took hold in the scientific community.

In its modern form, the Kinetic Molecular Theory of gasses is based on five basic
postulates.

1. Gas particles obey Newton’s laws of motion and travel in straight lines unless they

collide with other particles or the walls of the container.

Gas particles are very small compared to the averages of the distances between them.

Molecular collisions are perfectly elastic so that kinetic energy is conserved.

4. Gas particles so not interact with other particles except through collisions. There are no
attractive or repulsive forces between particles.

5. The average kinetic energy of the particles in a sample of gas is proportional to the
temperature.

wmn

Qualitatively, this model predicts the form of the ideal gas law.

1. More particles means more collisions with the wall (p « n)
2. Smaller volume means more frequent collisions with the wall (p x 1/V)
3. Higher molecular speeds means more frequent collisions with the walls (p « T)

Putting all of these together yields

_knT
P=ry

which is exactly the form of the ideal gas law! The remainder of the job is to derive a value for
the constant of proportionality that is consistent with experimental observation.

For simplicity, imagine a collection of gas particles in a fixed-volume container with all
of the particles traveling at the same velocity. What implications would the kinetic molecular
theory have on such a sample? One approach to answering this question is to derive an
expression for the pressure of the gas.

The pressure is going to be determined by considering the collisions of gas molecules
with the wall of the container. Each collision will impart some force. So the greater the number
of collisions, the greater the pressure will be. Also, the larger force imparted per collision, the
greater the pressure will be. And finally, the larger the area over which collisions are spread, the
smaller the pressure will be.

p < (number of collisions) x (force imparted per collision) / area

Thermochemistry and Chemical Kinetics: Gases © 2021 Patrick E. Fleming - Available under Creative
Commons Attribution-Noncommercial-Share Alike license 4.0 (CC BY-NC-SA 4.0)
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Figure 4. The "collision volume" is the subset of the total volume that contains
molecules that will actually collide with area A in the time interval At.

First off, the pressure that the gas exerts on the walls of the container would be due
entirely to the force imparted each time a molecule collides with the interior surface of the
container. This force will be scaled by the number of molecules that hit the area of the wall in a
given time. For this reason, it is convenient to define a “collision volume”.

Veor = (0 - At) - A

where vy is the speed the molecules are traveling in the x direction, At is the time interval (the
product of vx-AT gives the length to the collision volume box) and A is the area of the wall with
which the molecules will collide. Half of the molecules within this volume will collide with the
wall since half will be traveling toward it and half will be traveling away from it. The number of
molecules in this collision volume will be given by the total number of molecules in the sample
and the fraction of the total volume that is the collision volume. And thus, the number of
molecules that will collide with the wall is given by

1 Veot
Neor = ENtot%

And thus the number of molecules colliding with the wall will be

1 (v, At)A
Neoy = E totT

The magnitude of that force imparted per collision will be determined by the time-rate of
change in momentum of each particle as it hits the surface. It can be calculated by determining
the total momentum change and dividing by the total time required for the event. Since each
colliding molecule will change its velocity from vy to —vx, the magnitude of the momentum
change is 2(mvx). Thus the force imparted per collision is given by
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Chapter 2 - Gases

2(muv,)
F =
At
and the total force imparted is
2(mv,)
Feot = Neoy Tx
1 (v, A)A] [2(mv,)
=5 Neot
2 %4 At
muv?
= Neot <Tx> A

Since the pressure is given as the total force exerted per unit area, the pressure is given by

2 (v)

Fror _ <nuﬁ>__Ahmn1
The question then becomes how to deal with the velocity term. Initially, it was assumed that all
of the molecules had the same velocity, and so the magnitude of the velocity in the x-direction
was merely a function of the trajectory. However, real samples of gases comprise molecules with
an entire distribution of molecular speeds and trajectories. To deal with this distribution of
values, we replace (vx?) with the squared average of velocity in the x direction <v,>2.

_ Nioem
V

(vy)?

The distribution function for velocities in the x direction, known as the Maxwell-Boltzmann
distribution, is given by.

1 2
m E _ muvy

2kgT
2rkgT

Fwd =

This function has two parts: a normalization constant, and an exponential term. The
1

m

normalization constant, (2 T)E, is derived by noting that

ﬂkB

j:ﬂwmw=1

Thermochemistry and Chemical Kinetics: Gases © 2021 Patrick E. Fleming - Available under Creative
Commons Attribution-Noncommercial-Share Alike license 4.0 (CC BY-NC-SA 4.0)

20


https://creativecommons.org/licenses/by-nc-sa/4.0/




Chapter 2 - Gases

Calculating an Average from a Probability Distribution

Calculating an average for a finite set of data is fairly easy. The average is calculated by

But how does one proceed when the set of data is infinite? Or how does one proceed when all
one knows are the probabilities for each possible measured outcome? It turns out that that is
fairly simple too!

X =

N
X Py
=1

i

where P;j is the probability of measuring the value x;. This can also be extended to problems
where the measurable properties are not discrete (like the numbers that result from rolling a pair
of dice) but rather come from a continuous parent population. In this case, if the probability is of
measuring a specific outcome, the average value can then be determined by

X = fx-P(x)dx

where P(x) is the function describing the probability distribution, and with the integration taking
place across all possible values that x can take.

Calculating the average value of vx

A value that is useful (and will be used in further developments) is the average velocity in the x
direction. This can be derived using the probability distribution, as shown in the mathematical
development box above. The average value of vy is given by

<Ux) :f vxf(vx)dx

This integral will, by necessity, be zero. This must be the case as the distribution is symmetric,
so that half of the molecules are traveling in the +x direction, and half in the —x direction. These
motions will have to cancel. So, a more satisfying result will be given by considering the
magnitude of vx, which gives the speed in the x direction. Since this cannot be negative, and
given the symmetry of the distribution, the problem becomes

Thermochemistry and Chemical Kinetics: Gases © 2021 Patrick E. Fleming - Available under Creative
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o)

(vel) = 2 f v f () dx

In other words, we will consider only half of the distribution, and then double the result to
account for the half we ignored.

For simplicity, we will write the distribution function as

f(ve) = Ne~¥%

1

)E and a =

Where N = ( =

2mkgT 2kpT’

A table of definite integrals shows

() ) 1
fxe‘axdxz—
0 2a
So
( >—2N[1]—N
Vx) = 2al  «a

Substituting our definitions for N and o produces

1
(ve) = (ZnTZBT) (ZI:ST> - (2:§1T)

This expression indicates the average speed for motion of in one direction.

1
2

However, real gas samples have molecules not only with a distribution of molecular speeds and
but also a random distribution of directions. Using normal vector magnitude properties (or
simply using the Pythagorean Theorem), it can be seen that

(V) = (1) + (1)) + (1)
Since the direction of travel is random, the velocity can have any component in x, y, or z

directions with equal probability. As such, the average value of the X, y, or z components of
velocity should be the same. And so

(v)? = 3(vy)?

Substituting this into the expression for pressure yields
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_ Nioem

T

All that remains is to determine the form of the distribution of velocity magnitudes the
gas molecules can take. One of the first people to address this distribution was James Clerk
Maxwell (1831-1879). In his 1860 paper (Maxwell, Illustrations of the dynamical theory of
gases. Part 1. On the motions and collisions of perfectly elastic spheres, 1860), proposed a form
for this distribution of speeds which proved to be consistent with observed properties of gases
(such as their viscosities). He derived this expression based on a transformation of coordinate
system from Cartesian coordinates (X, y, z) to spherical polar coordinates (v, 0, ¢). In this new
coordinate system, v represents the magnitude of the velocity (or the speed) and all of the
directional data is carried in the angles 6 and ¢. The infinitesimal volume unit becomes

dx dy dz = v?sin(0) dv d6 d¢

Applying this transformation of coordinates, and ignoring the angular part (since he was
interested only in the speed) Maxwell’s distribution took the following form

2
f(v) = Nv?exp {— ZH:;T}

This function has three basic parts to it: a normalization constant (N), a velocity dependence
(v?), and an exponential term that contains the kinetic energy (¥ mv?). Since the function
represents the fraction of molecules with the speed v, the sum of the fractions for all possible
velocities must be unity. This sum can be calculated as an integral. The normalization constant
insures that

0

[ fvydv=1

0

3
Choosing the normalization constantas N = 4w /(an: T) yields the final form of the Maxwell
B
distribution of molecular speeds.

3 _ mv?
) v2e 2kgT

f) = 4m (ZﬂkBT

At low velocities, the v2 term causes the function to increase with increasing v, but then
at larger values of v, the exponential term causes it to drop back down asymptotically to zero.

Thermochemistry and Chemical Kinetics: Gases © 2021 Patrick E. Fleming - Available under Creative
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The distribution will spread over a larger range of speed at higher temperatures, but collapse to a
smaller range of values at lower temperatures.

Calculating the Average Speed

Using the Maxwell distribution as a distribution of probabilities, the average molecular speed in
a sample of gas molecules can be determined.

(o] m 3 _ mv?
(v) = f v 4m ( ) v2e ZkeT dy
2rkgT

= Zk T
411/ anB f 3¢ 2kp dv

The following can be found in a table of integrals:

«© s n!
.I; x2ntly—ax dx:zan+1
So
4
(v) = n/ 2k, T I
ZkB

Which simplifies to

1
2

(W) = (8kBT>

mm

Note: the value of (v) is twice that of (v,) which was derived in an earlier example!

(V) = 2(vy)

Example:
What is the average value of the squared speed according to the Maxwell distribution law?

Solution:

2= 002 d
(v2) jovﬂv) v
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So

2

o m 3 mv
(v?) = f z. (an ) v2e 2kBT dy
B

’ 2kT
anB fve B dv

1:3:5---(2n—1)
2n+1an E

A table of integrals indicates that

(o]
_ 2
f xMe~ WX dyx =
0

Substitution (noting that n = 2) yields

3kyT

which simplifies to

(v?) =

Note: The square root of this average squared speed is called the root mean square (RMS)
speed, and has the value

1
3kBT)2

Vrms = (
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The entire distribution is also affected by molecular mass. For lighter molecules, the distribution
is spread across a broader range of speeds at a given temperature, but collapses to a smaller range
for heavier molecules.

The probability distribution function can also be used to derive an expression for the most
probable speed (vmp), the average (Vave), and the root-mean-square (Vims) Speeds as a function of
the temperature and masses of the molecules in the sample. The most probable speed is the one
with the maximum probability. That will be the speed that yields the maximum value of f(v). It
is found by solving the expression

d =0
%f(v)—

for the value of v that makes it true. This will be the value that gives the maximum value of f(v)
for the given temperature. Similarly, the average value can be found using the distribution in the
following fashion

co

Vavg = (v) = f v f(v)dv

0

and the root-mean-square (RMS) speed by finding the square root of the average value of v?

Urms = (v?) = f v2f(v)dv
0
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Kinetic Energy

Using expressions for Vmp, Vave, OF Vs, it is fairly simple to derive expressions for kinetic
energy from the expression

Epin = Emvz

It is important to remember that there will be a full distribution of molecular speeds in a
thermalized sample of gas. Some molecules will be traveling faster and some more slowly. It is
also important to recognize that the most probable, average, and RMS Kinetic energy terms that
can be derived from the Kinetic Molecular Theory do not depend on the mass of the molecules.
As such, it can be concluded that the average kinetic energy of the molecules in a thermalized
sample of gas depends only on the temperature. However, the average speed depends on the
molecular mass. So, for a given temperature, light molecules will travel faster on average than
heavier molecules.

Thermochemistry and Chemical Kinetics: Gases © 2021 Patrick E. Fleming - Available under Creative
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Kinetic

Property Speed Ener
1
Most probable (ZkBT>2 kgT
m
1
Average (8kBT>2 kT
mm "
3 3
Root-mean-square (3kBT)2 ~kgT
m 2

The Ideal Gas Law

The expression for the root-mean-square molecular speed can be used to show that the
Kinetic Molecular model of gases is consistent with the ideal gas law. Consider the expression
for pressure

Niotm

p= T(v)z

Replacing <v>? with the square of the RMS speed expression yields

_ Nggem <3kBT)
3 \m
which simplifies to

— NtothT
vV

Noting that Nt = n'Na, where n is the number of moles and Na is Avogadro’s number

nN kT
P="y
Or
pV =nN,kgT
Finally, noting that Na‘ks = R
pV =nRT
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Chapter 2 - Gases

That’s kind of cool, no? The only assumptions (beyond the postulates ot the Kinetic Molecular
Theory) is that the distribution of velocities for a thermalized sample of gas is described by the
Maxwell-Boltzmann distribution law.

The next development will be to use the Kinetic Molecular Theory to describe molecular
collisions (which are essential events in many chemical reactions.)

Collisions with the Wall

In the derivation of an expression for the pressure of a gas, it is useful to consider the
frequency with which gas molecules collide with the walls of the container. To derive this
expression, consider the expression for the “collision volume”.

VCOl = vat ‘A

All of the molecules within this volume, and with a velocity such that the x-component exceeds
Vx (and is positive) will collide with the wall. That fraction of molecules is given by

N (v,)At - A
W=y

and the frequency of collisions with the wall per unit area per unit time is given by

N{v)
Yov o2

In order to expand this model into a more useful form, one must consider motion in all three
dimensions. Considering that

(v) = J<vx> (1) + ()

and that
(vy) = (1)) = (V)
it can be shown that

(W) = 2(vy)

or
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1
() = 5 (¥)

and so
1N
Zw = ZV(U)

The factor of N/V is often referred to as the “number density” as it gives the number of
molecules per unit volume. At 1 atm pressure and 298 K, the number density for an ideal gas is
approximately 2.5 x 10%® molecule/cm?®. (This value is easily calculated using the ideal gas law.)
By comparison, the average number density for the universe is approximately 1 molecule/cm?.

Graham’s Law of Effusion

An important consequence of the kinetic molecular theory is what it predicts in terms of
effusion and diffusion effects. Effusion is defined as a loss of material across a boundary. A
common example of effusion is the loss of gas inside of a balloon over time.

The rate at which gases will effuse from a balloon is affected by a number of factors. But one of
the most important is the frequency with which molecules collide with the interior surface of the

balloon. Since this is a function of the average molecular speed, it has an inverse dependence on
the square root of the molecular weight.

Rate of effusion o< 1/(MW)1/2

This can be used to compare the relative rates of effusion for gases of different molar masses.

Example: Consider two identical balloons, filled to the same volume, at the same pressure and
temperature. One balloon (A) is filled with SOz (MW: 48.06 g/mol) and the other (B) with N2
(MW: 28.01 g/mol). After a certain amount of time, the volume of balloon A decreases by 0.100
L. By how much is the volume of balloon B expected to decrease in the same time?
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Solution: Since the diffusion rate is inversely proportional to the square-root of the molar mass
rate <« 1/NMW

the ratio of the rates of diffusion will be given by

ratey MWy
rateg . |MW,

and the rate can be taken as the ratio of the change in volume divided by the time the gas is
allowed to diffuse. Since the time is the same for both balloons, it will cancel out in the ratio. So

or

x=0131L

The Knudsen Cell Experiment

A Knudsen cell is a chamber in which a thermalized sample of gas is kept, but allowed to effuse
through a small orifice in the wall. The gas sample can be modeled using the Kinetic Molecular
Theory model as a collection of particles traveling throughout the cell, colliding with one another
and also with the wall. If a small orifice is present, any molecules that would collide with that
portion of the wall will be lost through the orifice.

This makes a convenient arrangement to measure the vapor pressure of the material inside the
cell, as the total mass lost by effusion through the orifice will be proportional to the vapor
pressure of the substance. The vapor pressure can be related to the mass lost by the expression

g |2mRT
~AAt | MW

p

where g is the mass lost, A is the area of the orifice, At is the time the effusion is allowed to
proceed, T is the temperature and MW is the molar mass of the compound in the vapor phase.

Thermochemistry and Chemical Kinetics: Gases © 2021 Patrick E. Fleming - Available under Creative
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The pressure is then given by p. A schematic of what a Knudsen cell might look like is given
below.

lost

Example: Knudsen Cell Example

Solution:

Collisions with Other Molecules

A major concern in the design of many experiments is collisions of gas molecules with
other molecules in the gas phase. For example, molecular beam experiments are often dependent
on a lack of molecular collisions in the beam that could degrade the nature of the molecules in
the beam through chemical reactions or simply being knocked out of the beam.

In order to predict the frequency of molecular collisions, it is useful to first define the
conditions under which collisions will occur. For convenience, consider all of the molecules to
be spherical and in fixed in position except for one which is allowed to move through a “sea” of
other molecules. A molecular collision will occur every time the center of the moving molecule
comes within one molecular diameter of the center of another molecule.
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©
[ =

Vi

()

One can easily determine the number of molecules the moving molecule will “hit” by
determining the number of molecules that lie within the “collision cylinder”. Because we fixed
the positions of all but one of the molecules, we must use the relative speed of the moving
molecule, which will be given by

Vret = V2 v
The volume of the collision cylinder is given by

Veor = V2 - vAt- A
=2 vAt - (md?)

The collisional cross section, which determined by the size of the molecule is given by
o = nd?

Some values of ¢ are given in the table below:

Molecule & (nm?

He 0.21
Ne 0.24
N2 0.43
CO2 0.52
C2Has 0.64

Since the number of molecules within the collision cylinder is given by

N
Neor = V Veot
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and since the number density (N/V) is given by

N p

V kT

the number of collisions is given by
N, I=L(\/§-vAt-a)
co kBT

The frequency of collisions (number of collisions per unit time) is then given by

_ V2po

Z
kpT

(v)

Perhaps a more useful value is the mean free path, which is the distance a molecule can travel
on average before it collides with another molecule. This is easily derived from the collision
frequency. How far something can travel between collisions is given by the ratio of how fast it is
traveling and how often it hits other molecules:

(v)
A=7

Thus, the mean free path is given by

keT

A=
V2po

The mere fact that molecules undergo collisions represents a deviation from the kinetic
molecular theory. For example, if molecules were infinitesimally small (o = 0) then the mean
free path would be infinitely long! The finite size of molecules represents one significant
deviation from ideality. Another important deviation stems from the fact that molecules do
exhibit attractive and repulsive forces between one another. These forces depend on a number of
parameters, such as the distance between molecules and the temperature (or average kinetic
energy of the molecules.)

Real Gases
While the ideal gas law is sufficient for the prediction of large numbers of properties and

behaviors for gases, there are a number of times that deviations from ideality are extremely
important.
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The van der Waals Equation

Several equations of state have been suggested to account for the deviations from
ideality. One simple, but useful, expression is that proposed by Johannes Diderik van der Waals
(1837 — 1923) (Johannes Diderik van der Waals - Biographical, 2014)

Figure 5. Johannes van der Waals (1837 — 1923)

van der Waals’ equation introduced corrections to the pressure and volume terms of the ideal gas
law in order to account for intermolecular interactions and molecular size respectively.

a
<p+V—nzl) (V,, — b) = RT

or

_RT a

P=y . —b V2

In this expression, a and b are variables of a ——
given substance which can be measured and _Gas___a(atmL®mol®) Db (L/mol
tabulated. In general, molecules with large He 0.0341 0.0238
intermolecular forces will have large values of N2 1.352 0.0387
a, and large molecules will have large values of | CO2 3.610 0.0429
b. Some van der Waals constants are given in CaH4 4.552 0.0305

the following table:

The van der Walls model is useful because it makes it so simple to interpret the
parameters in terms of molecular size and intermolecular forces. But it does have limitations as
well (as is the case of every scientific model!) Some other useful two-parameter and three-
parameter (or more) equations of state include the Redlich-Kwong, Dieterici, and Clasius
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models. These have the advantage that they allow for temperature dependence on some of the
parameters, which as will be seen later, is necessary to model certain behaviors of real gases.

Model | Equation

_RT
Ideal p= W
van der Waals RT a
(van der Waals J. | P = V.-b V2
D., 1967)
Redlich-Kwong RT a
(Redlich & "=V, b VTV (V. +D)

Kwong, 1949)

Dieterici _ RT . a
(Dieterici, 1899) | P~V —beXp{ vaT}

m

RT a

Clausius p= V b _T(Vm oy
p:ﬂ(1+8_m+c_(p+...j
Vm Vm Vm

Virial Equations

p:\lj—T(1+ B'p+C'p2+~-)

m

The Virial Equation

A very handy expression that allows for deviations from ideal behavior is the Virial
Equation of state. This is a simple power series expansion in which the higher-order terms
contain all of the deviations from the ideal gas law.

(12D, D

Vin Vn Vi

In the limit that B(T) (the Second Virial Coefficient) and C(T) are zero, the equation becomes
the ideal gas law. Also, the molar volume of gases are small, the contributions from the third,
fourth, etc. terms decrease in magnitude, allowing one to truncate the series at a convenient
point. The second virial coefficient can be predicted from a theoretical intermolecular potential
function by

00 U(r)
B(T) = NAJ [1 - ekBTl 2nridr
r=0

The quality of an intermolecular potential can be determined (partially) by the potential’s ability
to predict the value of the second virial coefficient, B.
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The Leonard-Jones Potential

An intermolecular potential function is used to describe the interactions between
molecules. These interactions will have to include attractive forces, which will draw molecules
together, and repulsive forces which will push them apart. If the molecules are hard spheres,
lacking any attractive interactions, the potential function is fairly simple.

0, r>o0
0 x<o

U@ ={,,
In this function, o is determined by the size of the molecules. If two molecules come within a
distance r of one another, they collide, bouncing off in a perfectly elastic collision. Real
molecules, however, with have a range of intermolecular separations through which they will
experience attractive forces (the so-called “soft wall” of the potential surface.) And then at very
small separations, the repulsive forces will dominate, pushing the molecules apart (the so-called
“hard wall” of the potential surface.)

A commonly used intermolecular potential, U(r), is the Leonard-Jones potential. This
function has the form

v =43~ ()]
where ¢ governs the

width of the potential A Leonard-Jones Potential
well, and & governs the
depth. The distance |
between molecules is
given by r. The 1
repulsive interactions

between molecules are

12
contained in the (%) : : : . .

terms and the attractive
interactions are found

in the (%)6 term. I

Taylor Series Expansion

A commonly used method of creating a power series based on another equation is the
Taylor Series Expansion. This is an expansion of a function about a useful reference point
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where each of the terms is generated by differentiating the original function.
For a function f(x), the Taylor series F(x) can be generated from the expression

d 1 d2
F(x) = f(a)+af(x) ) x—a)+t5=

T f(x) (x—a)’>+ ..

This can be applied to any equation of state to derive an expression for the virial coefficients in
terms of the parameters of the equation of state.

Application to the van der Waals equation:

The van der Waals equation can be written in terms of molar volume as

RT a

p — — —

“V-b V?
Multiplying the right hand side by 5 (where u = %) yields:

_ RTu
p_l—bu

— au?

This expression can be expanded about u = 0 (which corresponds to an infinite molar volume.)
The coefficient terms that are needed for the expansion are

p(u = O) =0
dp [ RT N bRTu 5 ] — RT
du u=0 - 1—bu (1 - bu)Z “ u=0 -
1d?%p _ 1| bRT N bRT N 2b*RTu > — bRT
2tdp?| T 2| —bw? A—bw? (A-bu? | _~ :
u=0 | u=0
1d3
Ed_’; — RTH?
L eq u=0

And the virial equation can then be expressed in terms of the van der Waals parameters as
p =0+ RT(w) + (bRT — a)(w)? + RTh2W° 4 ...

Substituting u = 1/V and simplifying gives the desired result:
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1 (b-zp) »?
p =RT V+T+ﬁ+”

And the second virial coefficient is given by

a
B(T)=b—ﬁ

The Boyle Temperature

A useful way in which deviations ] ]
from ideality can be expressed is by SNSRI SO
defining the compression factor (Z). Z is :
given by 5 o
o
3
z=Em ~
x , / 200K
— —
where Vi is the molar volume. For an ideal | %, o s
gas, Z = 1 under all combinations of P, V, , // —
and T. However, real gases will show some \\/-//’
deviation (although all gases approach 05 N
ideal behavior at low p, high Vi, and high 0
T.) The compression factor for nitrogen at 0 . T 800
several temperatures is shown below over

a range of pressures.
As can be seen, the gas behaves closer to ideally over a longer range of pressure at the
higher temperatures. In general, there is one temperature, the Boyle temperature, at which a gas

will approach ideal behavior as the pressure goes to zero asymptotically, and thus behave ideally
over a broad range of lower pressures. The Boyle temperature is found by solving

tim (52) = o
po\ap)

or

0Z

lim
1/Vm=0\ 5 (%)

=0
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Using the virial equation of state, The Boyle temperature can be expressed in terms of the virial
coefficients. Starting with the compression factor

z—1+B+
B Vv

m

and then differentiating with respect to 1/Vr, yields

So it can be concluded that at the Boyle temperature, the second virial coefficient B is equal to
zero. This should make some sense given that the first virial coefficient provides most of the
deviation from the ideal gas law, and so it must vanish as the gas behaves more ideally.

Critical Behavior

The isotherms (lines of constant temperature) of p
CO2 reveal a very large deviation from ideal behavior.

At high temperatures, CO2 behaves according to Boyle’s
Law. However, at lower temperatures, the gas begins to
condense to form a liquid at high pressures. At one
specific temperature, the critical temperature, the

isotherm begins to display this critical behavior. The Satursted unseturated
temperature, pressure, and molar volume (pc, Tc, and V¢) S Y, e
at this point define the critical point. In order to solve for v

expressions for the critical constants, one requires three

equations. The equation of state provides one relationship. The second can be generated by
recognizing that the slope of the isotherm at the critical point is zero. And finally, the third
expression is derived by recognizing that the isotherm passes through an inflection point at the
critical point. Using the van der Waals equation as an example, these three equations can be
generated as follows:

_ RT a
P=y_p vz
dp RT 2a
(39~
ov (V-b)2 V3

0°p\ _ 2RT 6a_0
avz]  (v—-b)3 V4
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Solving these expressions for pc, Te, and V¢ yields

-2 L V. =3b
27b 27bR

P

The critical variables can be used in this fashion to determine the values of the molecular
parameters used in an equation of state (such as the van der Waals equation) for a given
substance.

The Principle of Corresponding States

The principle of corresponding states was proposed by van der Waals in 1913 (van der
Waals J. D., 1913). He noted that the compression factor at the critical point

_PVe

Z
¢~ RT,

is very nearly the same for any substance. This is consistent with what is predicted by the van der
Waals equation, which predicts Z. = 0.375 irrespective of substance.

Further, it can be noted that based on reduced variables defined by

pr=£ Vrzi Trzl
P. v T

several physical properties are found to be comparable for real substances. For example
(Guggenheim, 1945), for argon, krypton, nitrogen, oxygen, carbon dioxide and methane the
reduced compressibility is

PVe 0292
RT

c

Also, the reduced compression factor can be plotted as a function of reduced pressure for several
substances at several reduced isotherms with surprising consistency irrespective of the substance:
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After mastering the material covered in this chapter, one will be able to:

1. Understand the relationships demonstrated by and perform calculations using the
empirical gas laws (Boyle’s Law, Charles’ Law, Gay-Lussac’s Law, and Avogadro’s

Law, as well as the combined gas law.)
Understand and be able to utilize the ideal gas law in applications important in chemistry.
State the postulates of the Kinetic Molecular theory of gases.

wmn

4. Utilize the Maxwell and Maxwell-Boltzmann distributions to describe the relationship
between temperature and the distribution of molecular speeds.

5. Derive an expression for pressure based on the predictions of the kinetic molecular theory
for the collisions of gas molecules with the walls of a container.

6. Derive and utilize an expression for the frequency with which molecules in a gas sample

collide with other molecules.

7. Derive and utilize an expression for the mean-free-path of molecules based on
temperature, pressure, and collisional cross section.
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8. Explain how the van der Waals (and other) model(s) allow for deviations from ideal
behavior of gas samples.

9. Derive an expression for the Boyle temperature and interpret the results based on how a
gas’s behavior approaches that of an ideal gas.

10. Explain and utilize the Principle of Corresponding States.

Problems

1. Assuming the form of the Maxwell distribution allowing for motion in three directions to

be
_mv?
f(w) = Nv?e 2ksT
derive the correct expression for N such that the distribution is normalized. Hint: a table
of definite integrals indicates
ooxze_‘”‘zdx = l—ﬁ
0 4 q3/2

2. Dry ice (solid CO) has a density of 1.6 g/cm®. Assuming spherical molecules, estimate
the collisional cross section for CO.. How does it compare to the value listed in the text?

3. Calculate the pressure exerted by 1.00 mol of Ar, N2, and CO: as an ideal gas, a van der
Waals gas, and a Redlich-Kwong gas, at 25 °C and 24.4 L.

4. The compression factor Z for COz at 0 °C and 100 atm is 0.2007. Calculate the volume of
a 2.50 mole sample of CO> at 0 °C and 100 atm.

5. Calculate the pressure exerted by 1.00 mol of each gas at 273 K if the sample of gas
occupies 22.4 L

| Ar N2 | CO:
ideal

van der Waals

Redlich-Kwong

6. What is the maximum pressure that will afford a N2 molecule a mean-free-path of at least

45

1.00 m at 25 °C?

In a Knudsen cell, the effusion orifice is measured to be 0.50 mm?. If a sample of
naphthalene is allowed to effuse for 1.0 hr at a temperature of 40.3 °C, the cell loses
0.0236 g. From this data, calculate the vapor pressure of naphthalene at this temperature.
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8.

10.

11.

12.

13.

14.

15.

The vapor pressure of scandium was determined using a Knudsen cell [Kirkorian, J.
Phys. Chem., 67, 1586 (1963)]. The data from the experiment are given below.

Vapor Pressure of Scandium

Temperature 1555.4 K
Time 110.5 min
Mass loss 9.57 mg
Diameter of orifice 0.2965 cm

From this data, find the vapor pressure of scandium at 1555.4 K.

A thermalized sample of gas is one that has a distribution of molecular speeds given by
the Maxwell-Boltzmann distribution. Considering a sample of N at 25 °C what fraction
of the molecules have a speed less than

a. the most probably speed

b. the average sped

c. the RMS speed?

d. The RMS speed of helium atoms under the same conditions?

Assume that a person has a body surface area of 2.0 m?. Calculate the number of
collisions per second with the total surface area of this person at 25 °C and 1.00 atm. (For
convenience, assume air is 100% Ny2)

Two identical balloons are inflated to a volume of 1.00 L with a particular gas. After 12
hours, the volume of one balloon has decreased by 0.200 L. In the same time, the volume
of the other balloon has decreased by 0.0603 L. If the lighter of the two gases was
helium, what is the molar mass of the heavier gas?

Assuming it is a van der Waals gas, calculate the critical temperature, pressure and
volume for COa.

Find an expression in terms of van der Waals coefficients for the Boyle temperature.
(Hint: use the viral expansion of the van der Waals equation to find an expression for the
second viral coefficient!)

Consider a gas that follows the equation of state
_ RT
P=y b

Using a virial expansion, find an expression for the second virial coefficient.

Consider a gas that obeys the equation of state
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nRT an

“V_nb V

p

where a and b are non-zero constants. Does this gas exhibit critical behavior? If so, find
expressions for pc, V¢, and T¢ in terms of the constants a, b, and R.

16. Consider a gas that obeys the equation of state
pV = nRT + anpT + nbp
a. Find an expression for the Boyle temperature in terms of the constant a, b, and R.

b. Does this gas exhibit critical behavior? If so, find expressions for p¢, V¢, and T¢ in
terms of the constants a, b, and R.
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