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Chapter 2: Gases 
 

 Gases comprise a very important type of system that can be modeled using 

thermodynamics. This is true because gas samples can be described by very simple equations of 

state, such as the ideal gas law. In this chapter, both macroscopic and microscopic descriptions of 

gases will be used to demonstrate some of the important tools of thermodynamics. 

 

The Empirical Gas Laws 
 

 A number of important relationships describing the nature of gas samples have been 

derived completely empirically (meaning based solely on observation rather making an attempt 

to define the theoretical reason these relationships may exist. These are the empirical gas laws.  

 

Boyle’s Law 
 

 One of the important relationships governing gas samples that can be modeled 

mathematically is the relationship between pressure and volume. Robert Boyle (1627 – 1691) 

(Hunter, 2004) did experiments to confirm the observations of Richard Towneley and Henry 

Powers to show that for a fixed sample of gas at a constant temperature, pressure and volume are 

inversely proportional. 

 

𝑝𝑉 = 𝑐𝑜𝑛𝑠𝑡.  or  𝑝1𝑉1 = 𝑝2𝑉2 

 

Boyle used a glass u-tube that was closed at one end and with the lower portion filled with 

mercury (trapping a sample of air in the closed end.) By adding mercury to the open end, he was 

able to observe and quantify the compression of the trapped air. 

 

 
Figure 1. An apparatus similar to that used by Robert 

Boyle. (Image taken from (Fazio, 1992))  
Figure 2. Robert Boyle (1627 - 1691) 
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Charles’ Law 
 

 Charles’ Law states that the volume of a fixed sample of gas at constant pressure is 

proportional to the temperature. For this law to work, there must be an absolute minimum to the 

temperature scale since there is certainly an absolute minimum to the volume scale!  

 
𝑉

𝑇
= 𝑐𝑜𝑛𝑠𝑡.  or  

𝑉1

𝑇1
=

𝑉2

𝑇2
 

 

The second law of thermodynamics also predicts an absolute minimum temperature, but that will 

be developed in a later chapter. 

Gay-Lussac’s Law 
 

 Gay-Lussac’s Law states that the pressure of a fixed sample of gas is proportional to the 

temperature. As with Charles’ Law, this suggests the existence of an absolute minimum to the 

temperature scale since the pressure can never be negative. 

 
𝑝

𝑇
= 𝑐𝑜𝑛𝑠𝑡.  or  

𝑝1

𝑇1
=

𝑝2

𝑇2
 

 

Combined Gas Law 
 

 Boyle’s, Charles’, and Gay-Lussac’s Laws can be combined into a single empirical 

formula that can be useful. For a given amount of gas, the following relationship must hold: 

 
𝑝𝑉

𝑇
= 𝑐𝑜𝑛𝑠𝑡.  or  

𝑃1𝑉1

𝑇1
=

𝑝2𝑇2

𝑉2
  

 

 

Avogadro’s Law 
 

 Amedeo Avogadro (1776-1856) (Encycolopedia, 2016) 

did extensive work with gases in his studies of matter. In the 

course of his work, he noted an important relationship between 

the number of moles  in a gas sample. Avogadro’s Law 

(Avogadro, 1811) states that at the same temperature and 

pressure, any sample of gas has the same number of molecules 

per unit volume. 

 
𝑛

𝑉
= 𝑐𝑜𝑛𝑠𝑡.  or  

𝑛1

𝑉1
=

𝑛2

𝑉2
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The Ideal Gas Law 
 

 The ideal gas law combines the empirical laws into a single expression. It also predicts 

the existence of a single, universal gas constant, which turns out to be one of the most important 

fundamental constants in science. 

 

𝑝𝑉 = 𝑛𝑅𝑇 

 

The ideal gas law constant is of fundamental importance and can be expressed in a number of 

different sets of units. 

 

Value Units 

0.08206 atm L mol-1 K-1 

8.314 J mol-1 K-1 

1.987 cal mol-1 K-1 

 

The ideal gas law, as derived here, is based entirely on empirical data. It represents 

“limiting ideal behavior.” As such, deviations from the behavior suggested by the ideal gas law 

can be understood in terms of what conditions are required for ideal behavior to be followed (or 

at least approached.) As such, it would be nice if there was a theory of gases that would suggest 

the form of the ideal gas law and also the value of the gas law constant. As it turns out, the 

kinetic molecular theory of gases does just that! 

 

The Kinetic Molecular Theory of Gases 
 

 Theoretical models attempting to describe the nature of gases date back to the earliest 

scientific inquiries into the nature of matter and even earlier! In about 50 BC, Lucretius, a 

Roman philosopher, proposed that macroscopic bodies were composed of atoms that continually 

collide with one another and are in constant motion, despite the observable reality that the body 

itself is as rest. However, Lucretius’ ideas went largely ignored as they deviated from those of 

Aristotle, whose views were more widely accepted at the time. 

 

 In 1738, Daniel Bernoulli (Bernoulli, 1738) published a model that contains the basic 

framework for the modern Kinetic Molecular theory. Rudolf Clausius furthered the model in 

1857 by (among other things) introducing the concept of mean free path (Clausius, 1857). These 

ideas were further developed by Maxwell (Maxwell, Molecules, 1873). But, because atomic 

theory was not fully embraced in the early 20th century, it was not until Albert Einstein published 

one of his seminal works describing Brownian motion (Einstein, 1905) in which he modeled 

Figure 3. Amedeao Avogadro (1776 - 

1856) 
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matter using a kinetic theory of molecules that the idea of an atomic (or molecular) picture really 

took hold in the scientific community. 

 

 In its modern form, the Kinetic Molecular Theory of gasses is based on five basic 

postulates. 

 

1. Gas particles obey Newton’s laws of motion and travel in straight lines unless they 

collide with other particles or the walls of the container. 

2. Gas particles are very small compared to the averages of the distances between them. 

3. Molecular collisions are perfectly elastic so that kinetic energy is conserved. 

4. Gas particles so not interact with other particles except through collisions. There are no 

attractive or repulsive forces between particles. 

5. The average kinetic energy of the particles in a sample of gas is proportional to the 

temperature. 

 

Qualitatively, this model predicts the form of the ideal gas law. 

 

1. More particles means more collisions with the wall (p ∝ n) 

2. Smaller volume means more frequent collisions with the wall (p ∝ 1/V) 

3. Higher molecular speeds means more frequent collisions with the walls (p ∝ T) 

 

Putting all of these together yields 

 

𝑝 = 𝑘
𝑛𝑇

𝑉
 

 

which is exactly the form of the ideal gas law! The remainder of the job is to derive a value for 

the constant of proportionality that is consistent with experimental observation. 

For simplicity, imagine a collection of gas particles in a fixed-volume container with all 

of the particles traveling at the same velocity. What implications would the kinetic molecular 

theory have on such a sample? One approach to answering this question is to derive an 

expression for the pressure of the gas. 

 

 The pressure is going to be determined by considering the collisions of gas molecules 

with the wall of the container. Each collision will impart some force. So the greater the number 

of collisions, the greater the pressure will be.  Also, the larger force imparted per collision, the 

greater the pressure will be. And finally, the larger the area over which collisions are spread, the 

smaller the pressure will be. 

 

p ∝ (number of collisions) x (force imparted per collision) / area 
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Figure 4. The "collision volume" is the subset of the total volume that contains 

molecules that will actually collide with area A in the time interval t. 

 

First off, the pressure that the gas exerts on the walls of the container would be due 

entirely to the force imparted each time a molecule collides with the interior surface of the 

container. This force will be scaled by the number of molecules that hit the area of the wall in a 

given time. For this reason, it is convenient to define a “collision volume”. 

 

𝑉𝑐𝑜𝑙 = (𝑣𝑥 ∙ ∆𝑡) ∙ 𝐴 

 

where vx is the speed the molecules are traveling in the x direction, t is the time interval (the 

product of vx·T gives the length to the collision volume box) and A is the area of the wall with 

which the molecules will collide. Half of the molecules within this volume will collide with the 

wall since half will be traveling toward it and half will be traveling away from it. The number of 

molecules in this collision volume will be given by the total number of molecules in the sample 

and the fraction of the total volume that is the collision volume. And thus, the number of 

molecules that will collide with the wall is given by 

 

𝑁𝑐𝑜𝑙 =
1

2
𝑁𝑡𝑜𝑡

𝑉𝑐𝑜𝑙

𝑉
 

 

And thus the number of molecules colliding with the wall will be 

 

𝑁𝑐𝑜𝑙 =
1

2
𝑁𝑡𝑜𝑡

(𝑣𝑥∆𝑡)𝐴

𝑉
 

 

The magnitude of that force imparted per collision will be determined by the time-rate of 

change in momentum of each particle as it hits the surface. It can be calculated by determining 

the total momentum change and dividing by the total time required for the event. Since each 

colliding molecule will change its velocity from vx to –vx, the magnitude of the momentum 

change is 2(mvx). Thus the force imparted per collision is given by 
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𝐹 =
2(𝑚𝑣𝑥)

∆𝑡
 

 

and the total force imparted is 

 

 

𝐹𝑡𝑜𝑡 = 𝑁𝑐𝑜𝑙

2(𝑚𝑣𝑥)

∆𝑡
 

=
1

2
𝑁𝑡𝑜𝑡 [

(𝑣𝑥∆𝑡)𝐴

𝑉
] [

2(𝑚𝑣𝑥)

∆𝑡
] 

= 𝑁𝑡𝑜𝑡 (
𝑚𝑣𝑥

2

𝑉
) 𝐴 

 

Since the pressure is given as the total force exerted per unit area, the pressure is given by 

 

𝑝 =
𝐹𝑡𝑜𝑡

𝐴
= 𝑁𝑡𝑜𝑡 (

𝑚𝑣𝑥
2

𝑉
) =

𝑁𝑡𝑜𝑡𝑚

𝑉
(𝑣𝑥

2) 

 

The question then becomes how to deal with the velocity term. Initially, it was assumed that all 

of the molecules had the same velocity, and so the magnitude of the velocity in the x-direction 

was merely a function of the trajectory. However, real samples of gases comprise molecules with 

an entire distribution of molecular speeds and trajectories. To deal with this distribution of 

values, we replace (vx
2) with the squared average of velocity in the x direction <vx>

2. 

 

𝑝 =
𝑁𝑡𝑜𝑡𝑚

𝑉
〈𝑣𝑥〉2 

 

The distribution function for velocities in the x direction, known as the Maxwell-Boltzmann 

distribution, is given by. 

 

𝑓(𝑣𝑥) = (
𝑚

2𝜋𝑘𝐵𝑇
)

1
2

𝑒
−

𝑚𝑣𝑥
2

2𝑘𝐵𝑇 

 

This function has two parts: a normalization constant, and an exponential term. The 

normalization constant, (
𝑚

2𝜋𝑘𝐵𝑇
)

1

2
, is derived by noting that  

 

∫ 𝑓(𝑣𝑥)𝑑𝑣𝑥

∞

−∞

= 1 
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Normalizing the distribution 

 

The Maxwell-Boltzmann distribution has to be normalized because it is a probability 

distribution. As such, the sum of the probabilities for all possible values of vx must be unity. And 

since vx can take any value between -∞ and ∞, the following must be true: 

 

∫ 𝑓(𝑣𝑥)𝑑𝑣𝑥

∞

−∞

= 1 

 

So if the form of f(vx) is assumed to be 

 

𝑓(𝑣𝑥) = 𝑁𝑒
−

𝑚𝑣𝑥
2

2𝑘𝐵𝑇 

 

the normalization constant N can be found from 

 

∫ 𝑁𝑒
−

𝑚𝑣𝑥
2

2𝑘𝐵𝑇𝑑𝑣𝑥

∞

−∞

= 1 

 

The expression can be simplified by letting  = 
𝑚

2𝑘𝐵𝑇
.. It is then more simply written 

 

𝑁 ∫ 𝑒−𝛼𝑣𝑥
2
𝑑𝑣𝑥

∞

−∞

= 1 

 

A table of definite integrals says that 

 

∫ 𝑒−𝑎𝑥2
𝑑𝑥

∞

−∞

= √
𝜋

𝑎
 

 

So 

 

𝑁√
𝜋

𝛼
= 1 

 

𝑁 = √
𝛼

𝜋
= (

𝑚

2𝜋𝑘𝐵𝑇
)

1
2
 

 

And thus the normalized distribution function is given by 

 

𝑓(𝑣𝑥) = (
𝑚

2𝜋𝑘𝐵𝑇
)

1
2

𝑒
−

𝑚𝑣𝑥
2

2𝑘𝐵𝑇 
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Calculating an Average from a Probability Distribution 

 

Calculating an average for a finite set of data is fairly easy. The average is calculated by  

 

𝑥̅ =
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

 

 

But how does one proceed when the set of data is infinite? Or how does one proceed when all 

one knows are the probabilities for each possible measured outcome? It turns out that that is 

fairly simple too! 

 

𝑥̅ = ∑ 𝑥𝑖 ∙ 𝑃𝑖

𝑁

𝑖=1

 

 

where Pi is the probability of measuring the value xi. This can also be extended to problems 

where the measurable properties are not discrete (like the numbers that result from rolling a pair 

of dice) but rather come from a continuous parent population. In this case, if the probability is of 

measuring a specific outcome, the average value can then be determined by 

 

𝑥̅ = ∫ 𝑥 ∙ 𝑃(𝑥)𝑑𝑥 

 

where P(x) is the function describing the probability distribution, and with the integration taking 

place across all possible values that x can take. 

 

 

 

Calculating the average value of vx 

 

A value that is useful (and will be used in further developments) is the average velocity in the x 

direction. This can be derived using the probability distribution, as shown in the mathematical 

development box above. The average value of vx is given by 

 

〈𝑣𝑥〉 = ∫ 𝑣𝑥𝑓(𝑣𝑥)𝑑𝑥
∞

−∞

 

 

This integral will, by necessity, be zero. This must be the case as the distribution is symmetric, 

so that half of the molecules are traveling in the +x direction, and half in the –x direction. These 

motions will have to cancel. So, a more satisfying result will be given by considering the 

magnitude of vx, which gives the speed in the x direction. Since this cannot be negative, and 

given the symmetry of the distribution, the problem becomes 
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〈|𝑣𝑥|〉 = 2 ∫ 𝑣𝑥𝑓(𝑣𝑥)𝑑𝑥
∞

0

 

 

In other words, we will consider only half of the distribution, and then double the result to 

account for the half we ignored. 

 

For simplicity, we will write the distribution function as 

 

𝑓(𝑣𝑥) = 𝑁𝑒−𝛼𝑣𝑥
2
 

 

Where 𝑁 = (
𝑚

2𝜋𝑘𝐵𝑇
)

1

2
 and 𝛼 =

𝑚

2𝑘𝐵𝑇
. 

 

A table of definite integrals shows 

 

∫ 𝑥𝑒−𝑎𝑥2
𝑑𝑥

∞

0

=
1

2𝑎
 

 

So 

 

〈𝑣𝑥〉 = 2𝑁 [
1

2𝛼
] =

𝑁

𝛼
 

 

Substituting our definitions for N and  produces 

 

〈𝑣𝑥〉 = (
𝑚

2𝜋𝑘𝐵𝑇
)

1
2

(
2𝑘𝐵𝑇

𝑚
) = (

2𝑘𝐵𝑇

𝜋𝑚
)

1
2
 

 

This expression indicates the average speed for motion of in one direction. 

 

 

 

However, real gas samples have molecules not only with a distribution of molecular speeds and 

but also a random distribution of directions. Using normal vector magnitude properties (or 

simply using the Pythagorean Theorem), it can be seen that 

 

〈𝑣〉2 = 〈𝑣𝑥〉2 + 〈𝑣𝑦〉2 + 〈𝑣𝑧〉2 

 

 Since the direction of travel is random, the velocity can have any component in x, y, or z 

directions with equal probability. As such, the average value of the x, y, or z components of 

velocity should be the same. And so 

 

〈𝑣〉2 = 3〈𝑣𝑥〉2 

 

Substituting this into the expression for pressure yields 
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𝑝 =
𝑁𝑡𝑜𝑡𝑚

3𝑉
〈𝑣〉2 

 

 

 All that remains is to determine the form of the distribution of velocity magnitudes the 

gas molecules can take. One of the first people to address this distribution was James Clerk 

Maxwell (1831-1879). In his 1860 paper (Maxwell, Illustrations of the dynamical theory of 

gases. Part 1. On the motions and collisions of perfectly elastic spheres, 1860), proposed a form 

for this distribution of speeds which proved to be consistent with observed properties of gases 

(such as their viscosities). He derived this expression based on a transformation of coordinate 

system from Cartesian coordinates (x, y, z)  to spherical polar coordinates (v, , ). In this new 

coordinate system, v represents the magnitude of the velocity (or the speed) and all of the 

directional data is carried in the angles  and . The infinitesimal volume unit becomes 

 

𝑑𝑥 𝑑𝑦 𝑑𝑧 = 𝑣2 sin(𝜃) 𝑑𝑣 𝑑𝜃 𝑑𝜙 

 

Applying this transformation of coordinates, and ignoring the angular part (since he was 

interested only in the speed) Maxwell’s distribution took the following form 

 

𝑓(𝑣) = 𝑁𝑣2 exp {−
𝑚𝑣2

2𝑘𝐵𝑇
} 

 

This function has three basic parts to it: a normalization constant (N), a velocity dependence 

(v2), and an exponential term that contains the kinetic energy (½ mv2). Since the function 

represents the fraction of molecules with the speed v, the sum of the fractions for all possible 

velocities must be unity. This sum can be calculated as an integral. The normalization constant 

insures that 

 

1)(
0

=


dvvf  

 

Choosing the normalization constant as 𝑁 =  4𝜋√(
𝑚

2𝜋𝑘𝐵𝑇
)

3

 yields the final form of the Maxwell 

distribution of molecular speeds. 

 

𝑓(𝑣) = 4𝜋√(
𝑚

2𝜋𝑘𝐵𝑇
)

3

𝑣2𝑒
−

𝑚𝑣2

2𝑘𝐵𝑇 

 

 

At low velocities, the v2 term causes the function to increase with increasing v, but then 

at larger values of v, the exponential term causes it to drop back down asymptotically to zero. 

https://creativecommons.org/licenses/by-nc-sa/4.0/


25 

 

The distribution will spread over a larger range of speed at higher temperatures, but collapse to a 

smaller range of values at lower temperatures. 

 

 

Calculating the Average Speed 

 

Using the Maxwell distribution as a distribution of probabilities, the average molecular speed in 

a sample of gas molecules can be determined. 

 

〈𝑣〉  =  ∫ 𝑣 ∙ 4𝜋√(
𝑚

2𝜋𝑘𝐵𝑇
)

3

𝑣2𝑒
−

𝑚𝑣2

2𝑘𝐵𝑇 𝑑𝑣
∞

0

 

=  4𝜋√(
𝑚

2𝜋𝑘𝐵𝑇
)

3

∫ 𝑣3𝑒
−

𝑚𝑣2

2𝑘𝐵𝑇 𝑑𝑣
∞

0

 

 

The following can be found in a table of integrals: 

 

∫ 𝑥2𝑛+1𝑒−𝑎𝑥2
𝑑𝑥

∞

0

=
𝑛!

2𝑎𝑛+1
 

 

So 

 

〈𝑣〉 = 4𝜋√(
𝑚

2𝜋𝑘𝐵𝑇
)

3

[
1

2 (
𝑚

2𝑘𝐵𝑇
)

2] 

 

Which simplifies to 

〈𝑣〉 = (
8𝑘𝐵𝑇

𝜋𝑚
)

1
2
 

 

Note: the value of 〈𝑣〉 is twice that of 〈𝑣𝑥〉 which was derived in an earlier example! 

 
〈𝑣〉 = 2〈𝑣𝑥〉 

 

 

 

Example: 

What is the average value of the squared speed according to the Maxwell distribution law? 

 

Solution: 

 

〈𝑣2〉 = ∫ 𝑣2𝑓(𝑣) 𝑑𝑣
∞

0
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So 

 

〈𝑣2〉  =  ∫ 𝑣2 ∙ 4𝜋√(
𝑚

2𝜋𝑘𝐵𝑇
)

3

𝑣2𝑒
−

𝑚𝑣2

2𝑘𝐵𝑇 𝑑𝑣
∞

0

 

= 4𝜋√(
𝑚

2𝜋𝑘𝐵𝑇
)

3

∫ 𝑣4𝑒
−

𝑚𝑣2

2𝑘𝐵𝑇 𝑑𝑣
∞

0

 

 

A table of integrals indicates that 

 

∫ 𝑥2𝑛𝑒−𝑎𝑥2
𝑑𝑥

∞

0

=
1 ∙ 3 ∙ 5 ⋯ (2𝑛 − 1)

2𝑛+1𝑎𝑛
√

𝜋

𝑎
 

 

Substitution (noting that n = 2) yields 

 

〈𝑣2〉  =  4𝜋√(
𝑚

2𝜋𝑘𝐵𝑇
)

3

[
1 ∙ 3

23 (
𝑚

2𝑘𝐵𝑇
)

2 √

𝜋

(
𝑚

2𝑘𝐵𝑇
)

] 

 

which simplifies to 

〈𝑣2〉 =
3𝑘𝐵𝑇

𝑚
 

 

Note: The square root of this average squared speed is called the root mean square (RMS) 

speed, and has the value 

 

𝑣𝑅𝑀𝑆 = (
3𝑘𝐵𝑇

𝑚
)

1
2
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The entire distribution is also affected by molecular mass. For lighter molecules, the distribution 

is spread across a broader range of speeds at a given temperature, but collapses to a smaller range 

for heavier molecules. 

 

 The probability distribution function can also be used to derive an expression for the most 

probable speed (vmp), the average (vave), and the root-mean-square (vrms) speeds as a function of 

the temperature and masses of the molecules in the sample. The most probable speed is the one 

with the maximum probability. That will be the speed that yields the maximum value of f(v). It 

is found by solving the expression  

 
𝑑

𝑑𝑣
𝑓(𝑣) = 0 

 

for the value of v that makes it true. This will be the value that gives the maximum value of f(v) 

for the given temperature. Similarly, the average value can be found using the distribution in the 

following fashion 

 

𝑣𝑎𝑣𝑔 = 〈𝑣〉 = ∫ 𝑣 ∙ 𝑓(𝑣)𝑑𝑣

∞

0

 

 

and the root-mean-square (RMS) speed by finding the square root of the average value of v2 

 

𝑣𝑟𝑚𝑠 = √〈𝑣2〉 = √∫ 𝑣2𝑓(𝑣)𝑑𝑣

∞

0
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Kinetic Energy 
 

 Using expressions for vmp, vave, or vrms, it is fairly simple to derive expressions for kinetic 

energy from the expression 

 

𝐸𝑘𝑖𝑛 =
1

2
𝑚𝑣2 

 

 It is important to remember that there will be a full distribution of molecular speeds in a 

thermalized sample of gas. Some molecules will be traveling faster and some more slowly. It is 

also important to recognize that the most probable, average, and RMS kinetic energy terms that 

can be derived from the Kinetic Molecular Theory do not depend on the mass of the molecules. 

As such, it can be concluded that the average kinetic energy of the molecules in a thermalized 

sample of gas depends only on the temperature. However, the average speed depends on the 

molecular mass. So, for a given temperature, light molecules will travel faster on average than 

heavier molecules. 
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Property Speed 
Kinetic 

Energy 

Most probable (
2𝑘𝐵𝑇

𝑚
)

1
2
 𝑘𝐵𝑇 

Average (
8𝑘𝐵𝑇

𝜋𝑚
)

1
2
 

4𝑘𝐵𝑇

𝜋
 

Root-mean-square (
3𝑘𝐵𝑇

𝑚
)

1
2
 

3

2
𝑘𝐵𝑇 

 

 

The Ideal Gas Law 
 

 The expression for the root-mean-square molecular speed can be used to show that the 

Kinetic Molecular model of gases is consistent with the ideal gas law. Consider the expression 

for pressure 

 

𝑝 =
𝑁𝑡𝑜𝑡𝑚

3𝑉
〈𝑣〉2 

 

Replacing <v>2 with the square of the RMS speed expression yields 

 

 

𝑝 =
𝑁𝑡𝑜𝑡𝑚

3𝑉
(

3𝑘𝐵𝑇

𝑚
) 

 

 

which simplifies to 

 

𝑝 =
𝑁𝑡𝑜𝑡𝑘𝐵𝑇

𝑉
 

 

Noting that Ntot = n∙NA, where n is the number of moles and NA is Avogadro’s number 

 

𝑝 =
𝑛𝑁𝐴𝑘𝐵𝑇

𝑉
 

 

Or 

 

𝑝𝑉 = 𝑛𝑁𝐴𝑘𝐵𝑇 

 

Finally, noting that NA∙kB = R 

 

𝑝𝑉 = 𝑛𝑅𝑇 
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That’s kind of cool, no? The only assumptions (beyond the postulates ot the Kinetic Molecular 

Theory) is that the distribution of velocities for a thermalized sample of gas is described by the 

Maxwell-Boltzmann distribution law. 

 

 The next development will be to use the Kinetic Molecular Theory to describe molecular 

collisions (which are essential events in many chemical reactions.) 

 

Collisions with the Wall 
 

 In the derivation of an expression for the pressure of a gas, it is useful to consider the 

frequency with which gas molecules collide with the walls of the container. To derive this 

expression, consider the expression for the “collision volume”. 

 

𝑉𝑐𝑜𝑙 = 𝑣𝑥∆𝑡 ∙ 𝐴 

 

All of the molecules within this volume, and with a velocity such that the x-component exceeds 

vx (and is positive) will collide with the wall. That fraction of molecules is given by 

 

𝑁𝑐𝑜𝑙 =
𝑁

𝑉

〈𝑣𝑥〉∆𝑡 ∙ 𝐴

2
 

 

and the frequency of collisions with the wall per unit area per unit time is given by 

 

𝑍𝑤 =
𝑁

𝑉

〈𝑣𝑥〉

2
 

 

In order to expand this model into a more useful form, one must consider motion in all three 

dimensions. Considering that 

 

〈𝑣〉 = √〈𝑣𝑥〉 + 〈𝑣𝑦〉 + 〈𝑣𝑧〉 

 

and that 

 
〈𝑣𝑥〉 = 〈𝑣𝑦〉 = 〈𝑣𝑧〉 

 

it can be shown that 

 
〈𝑣〉 = 2〈𝑣𝑥〉 

 

or  
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〈𝑣𝑥〉 =
1

2
〈𝑣〉 

 

and so  

 

𝑍𝑤 =
1

4

𝑁

𝑉
〈𝑣〉 

 

 The factor of N/V is often referred to as the “number density” as it gives the number of 

molecules per unit volume. At 1 atm pressure and 298 K, the number density for an ideal gas is 

approximately 2.5 x 1019 molecule/cm3. (This value is easily calculated using the ideal gas law.) 

By comparison, the average number density for the universe is approximately 1 molecule/cm3. 

 

Graham’s Law of Effusion 
 

 An important consequence of the kinetic molecular theory is what it predicts in terms of 

effusion and diffusion effects. Effusion is defined as a loss of material across a boundary. A 

common example of effusion is the loss of gas inside of a balloon over time.  

 

 
 

The rate at which gases will effuse from a balloon is affected by a number of factors. But one of 

the most important is the frequency with which molecules collide with the interior surface of the 

balloon. Since this is a function of the average molecular speed, it has an inverse dependence on 

the square root of the molecular weight. 

 

Rate of effusion ∝ 1/(MW)1/2 

 

This can be used to compare the relative rates of effusion for gases of different molar masses. 

 

Example: Consider two identical balloons, filled to the same volume, at the same pressure and 

temperature. One balloon (A) is filled with SO2 (MW: 48.06 g/mol) and the other (B) with N2 

(MW: 28.01 g/mol). After a certain amount of time, the volume of balloon A decreases by 0.100 

L. By how much is the volume of balloon B expected to decrease in the same time? 
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Solution: Since the diffusion rate is inversely proportional to the square-root of the molar mass 

 

𝑟𝑎𝑡𝑒 ∝ 1/√𝑀𝑊 

 

the ratio of the rates of diffusion will be given by 

 

𝑟𝑎𝑡𝑒𝐴

𝑟𝑎𝑡𝑒𝐵
= √

𝑀𝑊𝐵

𝑀𝑊𝐴
 

 

and the rate can be taken as the ratio of the change in volume divided by the time the gas is 

allowed to diffuse. Since the time is the same for both balloons, it will cancel out in the ratio. So 

 

0.100 𝐿

𝑥
= √

28.01
𝑔

𝑚𝑜𝑙

48.06
𝑔

𝑚𝑜𝑙

 

 

or 

 

𝑥 = 0.131 𝐿 

 

 

 

The Knudsen Cell Experiment 
 

A Knudsen cell is a chamber in which a thermalized sample of gas is kept, but allowed to effuse 

through a small orifice in the wall. The gas sample can be modeled using the Kinetic Molecular 

Theory model as a collection of particles traveling throughout the cell, colliding with one another 

and also with the wall. If a small orifice is present, any molecules that would collide with that 

portion of the wall will be lost through the orifice. 

 

This makes a convenient arrangement to measure the vapor pressure of the material inside the 

cell, as the total mass lost by effusion through the orifice will be proportional to the vapor 

pressure of the substance. The vapor pressure can be related to the mass lost by the expression 

 

𝑝 =
𝑔

𝐴∆𝑡
√

2𝜋𝑅𝑇

𝑀𝑊
 

 

where g is the mass lost, A is the area of the orifice, t is the time the effusion is allowed to 

proceed, T is the temperature and MW is the molar mass of the compound in the vapor phase. 
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The pressure is then given by p. A schematic of what a Knudsen cell might look like is given 

below. 

 

 
 

Example: Knudsen Cell Example 

 

Solution: 

 

 

Collisions with Other Molecules 
 

 A major concern in the design of many experiments is collisions of gas molecules with 

other molecules in the gas phase. For example, molecular beam experiments are often dependent 

on a lack of molecular collisions in the beam that could degrade the nature of the molecules in 

the beam through chemical reactions or simply being knocked out of the beam. 

 

 In order to predict the frequency of molecular collisions, it is useful to first define the 

conditions under which collisions will occur. For convenience, consider all of the molecules to 

be spherical and in fixed in position except for one which is allowed to move through a “sea” of 

other molecules. A molecular collision will occur every time the center of the moving molecule  

comes within one molecular diameter of the center of another molecule. 

 



Chapter 2 - Gases 

 

Thermochemistry and Chemical Kinetics: Gases © 2021 Patrick E. Fleming – Available under Creative 
Commons Attribution-Noncommercial-Share Alike license 4.0 (CC BY-NC-SA 4.0) 

34 

 

 
 

One can easily determine the number of molecules the moving molecule will “hit” by 

determining the number of molecules that lie within the “collision cylinder”.  Because we fixed 

the positions of all but one of the molecules, we must use the relative speed of the moving 

molecule, which will be given by 

 

𝑣𝑟𝑒𝑙 = √2 ∙ 𝑣 

 

The volume of the collision cylinder is given by 

 

𝑉𝑐𝑜𝑙 = √2 ∙ 𝑣∆𝑡 ∙ 𝐴 

= √2 ∙ 𝑣∆𝑡 ∙ (𝜋𝑑2) 

 

The collisional cross section, which determined by the size of the molecule is given by 

 

𝜎 = 𝜋𝑑2 

 

Some values of  are given in the table below: 

 

Molecule  (nm2) 

He 0.21 

Ne 0.24 

N2 0.43 

CO2 0.52 

C2H4 0.64 

 
Since the number of molecules within the collision cylinder is given by  

 

𝑁𝑐𝑜𝑙 =
𝑁

𝑉
𝑉𝑐𝑜𝑙 
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and since the number density (N/V) is given by 

 
𝑁

𝑉
=

𝑝

𝑘𝐵𝑇
 

 

the number of collisions is given by 

 

𝑁𝑐𝑜𝑙 =
𝑝

𝑘𝐵𝑇
(√2 ∙ 𝑣∆𝑡 ∙ 𝜎) 

 

The frequency of collisions (number of collisions per unit time) is then given by 

 

𝑍 =
√2𝑝𝜎

𝑘𝐵𝑇
〈𝑣〉 

 

Perhaps a more useful value is the mean free path, which is the distance a molecule can travel 

on average before it collides with another molecule. This is easily derived from the collision 

frequency. How far something can travel between collisions is given by the ratio of how fast it is 

traveling and how often it hits other molecules: 

 

𝜆 =
〈𝑣〉

𝑍
 

 

Thus, the mean free path is given by 

 

𝜆 =
𝑘𝐵𝑇

√2𝑝𝜎
 

 

The mere fact that molecules undergo collisions represents a deviation from the kinetic 

molecular theory. For example, if molecules were infinitesimally small ( ≈ 0) then the mean 

free path would be infinitely long! The finite size of molecules represents one significant 

deviation from ideality. Another important deviation stems from the fact that molecules do 

exhibit attractive and repulsive forces between one another. These forces depend on a number of 

parameters, such as the distance between molecules and the temperature (or average kinetic 

energy of the molecules.) 

 

 

 

Real Gases 
 

 While the ideal gas law is sufficient for the prediction of large numbers of properties and 

behaviors for gases, there are a number of times that deviations from ideality are extremely 

important. 
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The van der Waals Equation 
 Several equations of state have been suggested to account for the deviations from 

ideality. One simple, but useful, expression is that proposed by Johannes Diderik van der Waals 

(1837 – 1923) (Johannes Diderik van der Waals - Biographical, 2014) 

 

 
Figure 5. Johannes van der Waals (1837 – 1923) 

 

van der Waals’ equation introduced corrections to the pressure and volume terms of the ideal gas 

law in order to account for intermolecular interactions and molecular size respectively.  

 

(𝑝 +
𝑎

𝑉𝑚
2

) (𝑉𝑚 − 𝑏) = 𝑅𝑇 

or 

 

𝑝 =
𝑅𝑇

𝑉𝑚 − 𝑏
−

𝑎

𝑉𝑚
2
 

 

In this expression, a and b are variables of a 

given substance which can be measured and 

tabulated. In general, molecules with large 

intermolecular forces will have large values of 

a, and large molecules will have large values of 

b. Some van der Waals constants are given in 

the following table: 

 

 

 

 The van der Walls model is useful because it makes it so simple to interpret the 

parameters in terms of molecular size and intermolecular forces. But it does have limitations as 

well (as is the case of every scientific model!) Some other useful two-parameter and three-

parameter (or more) equations of state include the Redlich-Kwong, Dieterici, and Clasius 

Gas a (atm L2 mol-2) b (L/mol) 

He 0.0341 0.0238 

N2 1.352 0.0387 

CO2 3.610 0.0429 

C2H4 4.552 0.0305 
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models. These have the advantage that they allow for temperature dependence on some of the 

parameters, which as will be seen later, is necessary to model certain behaviors of real gases.  

 

Model Equation 

Ideal 
mV

RT
p =  

van der Waals 

(van der Waals J. 

D., 1967) 

2

mm V

a

bV

RT
p −

−
=  

Redlich-Kwong 

(Redlich & 

Kwong, 1949) 
( )bVVT

a

bV

RT
p

mmm +
−

−
=  

Dieterici 

(Dieterici, 1899) 






−

−
=

RTV

a

bV

RT
p

mm

exp  

Clausius 
( )2cVT

a

bV

RT
p

mm +
−

−
=  

Virial Equations 









+++= 

2

)()(
1

mmm V

TC

V

TB

V

RT
p  

 

( )+++= 2''1 pCpB
V

RT
p

m

 

 

The Virial Equation 
 

 A very handy expression that allows for deviations from ideal behavior is the Virial 

Equation of state. This is a simple power series expansion in which the higher-order terms 

contain all of the deviations from the ideal gas law. 

 

𝑝 =
𝑅𝑇

𝑉𝑚
(1 +

𝐵(𝑇)

𝑉𝑚
+

𝐶(𝑇)

𝑉𝑚
2

+ ⋯ ) 

 

In the limit that B(T) (the Second Virial Coefficient) and C(T) are zero, the equation becomes 

the ideal gas law. Also, the molar volume of gases are small, the contributions from the third, 

fourth, etc. terms decrease in magnitude, allowing one to truncate the series at a convenient 

point. The second virial coefficient can be predicted from a theoretical intermolecular potential 

function by 

 

𝐵(𝑇) = 𝑁𝐴 ∫ [1 − 𝑒
𝑈(𝑟)
𝑘𝐵𝑇 ] 2𝜋𝑟2𝑑𝑟

∞

𝑟=0

 

 

The quality of an intermolecular potential can be determined (partially) by the potential’s ability 

to predict the value of the second virial coefficient, B. 
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The Leonard-Jones Potential  
 

 An intermolecular potential function is used to describe the interactions between 

molecules. These interactions will have to include attractive forces, which will draw molecules 

together, and repulsive forces which will push them apart. If the molecules are hard spheres, 

lacking any attractive interactions, the potential function is fairly simple. 

 

𝑈(𝑟) = {
0, 𝑟 > 𝜎

∞, 𝑥 ≤ 𝜎
 

 

In this function,  is determined by the size of the molecules. If two molecules come within a 

distance r of one another, they collide, bouncing off in a perfectly elastic collision. Real 

molecules, however, with have a range of intermolecular separations through which they will 

experience attractive forces (the so-called “soft wall” of the potential surface.) And then at very 

small separations, the repulsive forces will dominate, pushing the molecules apart (the so-called 

“hard wall” of the potential surface.) 

 

A commonly used intermolecular potential, U(r), is the Leonard-Jones potential. This 

function has the form 

 

𝑈(𝑟) = 4𝜀 [(
𝜎

𝑟
)

12

− (
𝜎

𝑟
)

6

] 

 

where  governs the 

width of the potential 

well, and  governs the 

depth. The distance 

between molecules is 

given by r. The 

repulsive interactions 

between molecules are 

contained in the (
𝜎

𝑟
)

12

 

terms and the attractive 

interactions are found 

in the (
𝜎

𝑟
)

6

 term. 

 

 

 

Taylor Series Expansion 

 

 A commonly used method of creating a power series based on another equation is the 

Taylor Series Expansion. This is an expansion of a function about a useful reference point 

A Leonard-Jones Potential
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where each of the terms is generated by differentiating the original function. 

 

For a function f(x), the Taylor series F(x) can be generated from the expression 

 

𝐹(𝑥) =  𝑓(𝑎) +
𝑑

𝑑𝑥
𝑓(𝑥)|

𝑥=𝑎

(𝑥 − 𝑎) +
1

2!

𝑑2

𝑑𝑥2
𝑓(𝑥)|

𝑥=𝑎

(𝑥 − 𝑎)2 +  … 

 

This can be applied to any equation of state to derive an expression for the virial coefficients in 

terms of the parameters of the equation of state. 

 

 

Application to the van der Waals equation: 

 

The van der Waals equation can be written in terms of molar volume as 

 

𝑝 =
𝑅𝑇

𝑉 − 𝑏
−

𝑎

𝑉2
 

 

Multiplying the right hand side by 
𝑢

𝑢
 (where 𝑢 =

1

𝑉
) yields: 

 

𝑝 =
𝑅𝑇𝑢

1 − 𝑏𝑢
− 𝑎𝑢2 

 

This expression can be expanded about u = 0 (which corresponds to an infinite molar volume.) 

The coefficient terms that are needed for the expansion are 

 

𝑝(𝑢 = 0) = 0 

 
𝑑𝑝

𝑑𝑢
|

𝑢=0
= [

𝑅𝑇

1 − 𝑏𝑢
+

𝑏𝑅𝑇𝑢

(1 − 𝑏𝑢)2
− 2𝑎𝑢]

𝑢=0

= 𝑅𝑇 

 

1

2!

𝑑2𝑝

𝑑𝑝2
|

𝑢=0

=
1

2
[

𝑏𝑅𝑇

(1 − 𝑏𝑢)2
+

𝑏𝑅𝑇

(1 − 𝑏𝑢)2
+

2𝑏2𝑅𝑇𝑢

(1 − 𝑏𝑢)3
− 2𝑎]

𝑢=0

= 𝑏𝑅𝑇 − 𝑎 

 

1

3!

𝑑3𝑝

𝑑𝑝3
|

𝑢=0

= 𝑅𝑇𝑏2 

 

And the virial equation can then be expressed in terms of the van der Waals parameters as 

 

𝑝 = 0 + 𝑅𝑇(𝑢) + (𝑏𝑅𝑇 − 𝑎)(𝑢)2 + 𝑅𝑇𝑏2(𝑢)3
+ ⋯ 

 

Substituting u = 1/V and simplifying gives the desired result: 
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𝑝 = 𝑅𝑇 [
1

𝑉
+

(𝑏 −
𝑎

𝑅𝑇)

𝑉2
+

𝑏2

𝑉3
+ ⋯ ] 

 

And the second virial coefficient is given by 

 

𝐵(𝑇) = 𝑏 −
𝑎

𝑅𝑇
 

 

 

The Boyle Temperature 
 

 A useful way in which deviations 

from ideality can be expressed is by 

defining the compression factor (Z). Z is 

given by 

 

𝑍 =
𝑝𝑉𝑚

𝑅𝑇
 

 

where Vm is the molar volume. For an ideal 

gas, Z = 1 under all combinations of P, Vm, 

and T. However, real gases will show some 

deviation (although all gases approach 

ideal behavior at low p, high Vm, and high 

T.) The compression factor for nitrogen at 

several temperatures is shown below over 

a range of pressures. 

 

As can be seen, the gas behaves closer to ideally over a longer range of pressure at the 

higher temperatures. In general, there is one temperature, the Boyle temperature, at which a gas 

will approach ideal behavior as the pressure goes to zero asymptotically, and thus behave ideally 

over a broad range of lower pressures. The Boyle temperature is found by solving 

 

lim
𝑝→0

(
𝜕𝑍

𝜕𝑝
) = 0 

 

or 

 

lim
1/𝑉𝑚→0

(
𝜕𝑍

𝜕 (
1

𝑉𝑚
)

) = 0 
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Using the virial equation of state, The Boyle temperature can be expressed in terms of the virial 

coefficients. Starting with the compression factor 

 

𝑍 = 1 +
𝐵

𝑉𝑚
+ ⋯ 

 

and then differentiating with respect to 1/Vm yields 

 

(
𝜕𝑍

𝜕 (
1

𝑉𝑚
)

) = 𝐵 

 

So it can be concluded that at the Boyle temperature, the second virial coefficient B is equal to 

zero. This should make some sense given that the first virial coefficient provides most of the 

deviation from the ideal gas law, and so it must vanish as the gas behaves more ideally. 

 

Critical Behavior 
 

 The isotherms (lines of constant temperature) of 

CO2 reveal a very large deviation from ideal behavior. 

 

 

At high temperatures, CO2 behaves according to Boyle’s 

Law. However, at lower temperatures, the gas begins to 

condense to form a liquid at high pressures. At one 

specific temperature, the critical temperature, the 

isotherm begins to display this critical behavior. The 

temperature, pressure, and molar volume (pc, Tc, and Vc) 

at this point define the critical point. In order to solve for 

expressions for the critical constants, one requires three 

equations. The equation of state provides one relationship. The second can be generated by 

recognizing that the slope of the isotherm at the critical point is zero. And finally, the third 

expression is derived by recognizing that the isotherm passes through an inflection point at the 

critical point. Using the van der Waals equation as an example, these three equations can be 

generated as follows: 

 

𝑝 =
𝑅𝑇

𝑉 − 𝑏
−

𝑎

𝑉2
 

 

(
𝜕𝑝

𝜕𝑉
) = −

𝑅𝑇

(𝑉 − 𝑏)2
+

2𝑎

𝑉3
= 0 

 

(
𝜕2𝑝

𝜕𝑉2
) =

2𝑅𝑇

(𝑉 − 𝑏)3
−

6𝑎

𝑉4
= 0 
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Solving these expressions for pc, Tc, and Vc yields 

 

227b

a
pc =   

bR

a
Tc

27

8
=   bVc 3=  

 

The critical variables can be used in this fashion to determine the values of the molecular 

parameters used in an equation of state (such as the van der Waals equation) for a given 

substance. 

 

The Principle of Corresponding States 
 

 The principle of corresponding states was proposed by van der Waals in 1913 (van der 

Waals J. D., 1913). He noted that the compression factor at the critical point 

 

𝑍𝑐 =
𝑝𝑐𝑉𝑐

𝑅𝑇𝑐
 

 

is very nearly the same for any substance. This is consistent with what is predicted by the van der 

Waals equation, which predicts Zc = 0.375 irrespective of substance. 

 

 Further, it can be noted that based on reduced variables defined by 

 

c

r
p

p
p =   

c

r
V

V
V =   

c

r
T

T
T =  

 

several physical properties are found to be comparable for real substances. For example 

(Guggenheim, 1945), for argon, krypton, nitrogen, oxygen, carbon dioxide and methane the 

reduced compressibility is  

  

292.0
c

cc

RT

Vp
 

 

Also, the reduced compression factor can be plotted as a function of reduced pressure for several 

substances at several reduced isotherms with surprising consistency irrespective of the substance: 
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Learning Objectives 
 

After mastering the material covered in this chapter, one will be able to: 

 

1. Understand the relationships demonstrated by and perform calculations using the 

empirical gas laws (Boyle’s Law, Charles’ Law, Gay-Lussac’s Law, and Avogadro’s 

Law, as well as the combined gas law.) 

2. Understand and be able to utilize the ideal gas law in applications important in chemistry. 

3. State the postulates of the Kinetic Molecular theory of gases. 

4. Utilize the Maxwell and Maxwell-Boltzmann distributions to describe the relationship 

between temperature and the distribution of molecular speeds. 

5. Derive an expression for pressure based on the predictions of the kinetic molecular theory 

for the collisions of gas molecules with the walls of a container. 

6. Derive and utilize an expression for the frequency with which molecules in a gas sample 

collide with other molecules. 

7. Derive and utilize an expression for the mean-free-path of molecules based on 

temperature, pressure, and collisional cross section. 
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8. Explain how the van der Waals (and other) model(s) allow for deviations from ideal 

behavior of gas samples. 

9. Derive an expression for the Boyle temperature and interpret the results based on how a 

gas’s behavior approaches that of an ideal gas. 

10. Explain and utilize the Principle of Corresponding States. 

Problems 
 

1. Assuming the form of the Maxwell distribution allowing for motion in three directions to 

be 

 

𝑓(𝑣) = 𝑁𝑣2𝑒
−

𝑚𝑣2

2𝑘𝐵𝑇 

 

derive the correct expression for N such that the distribution is normalized. Hint: a table 

of definite integrals indicates 

 

∫ 𝑥2𝑒−𝑎𝑥2
𝑑𝑥

∞

0

=
1

4

√𝜋

𝑎3 2⁄
 

 

 

2. Dry ice (solid CO2) has a density of 1.6 g/cm3. Assuming spherical molecules, estimate 

the collisional cross section for CO2. How does it compare to the value listed in the text? 

 

3. Calculate the pressure exerted by 1.00 mol of Ar, N2, and CO2 as an ideal gas, a van der 

Waals gas, and a Redlich-Kwong gas, at 25 oC and 24.4 L. 

 

4. The compression factor Z for CO2 at 0 oC and 100 atm is 0.2007. Calculate the volume of 

a 2.50 mole sample of CO2 at 0 oC and 100 atm. 

 

5. Calculate the pressure exerted by 1.00 mol of each gas at 273 K if the sample of gas 

occupies 22.4 L   

 

 Ar N2 CO2 

ideal    

van der Waals    

Redlich-Kwong    

 

6. What is the maximum pressure that will afford a N2 molecule a mean-free-path of at least 

1.00 m at 25 oC? 

 

7. In a Knudsen cell, the effusion orifice is measured to be 0.50 mm2. If a sample of 

naphthalene is allowed to effuse for 1.0 hr at a temperature of 40.3 oC, the cell loses 

0.0236 g. From this data, calculate the vapor pressure of naphthalene at this temperature. 
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8. The vapor pressure of scandium was determined using a Knudsen cell [Kirkorian, J. 

Phys. Chem., 67, 1586 (1963)]. The data from the experiment are given below. 

 

Vapor Pressure of Scandium 

Temperature 1555.4 K 

Time 110.5 min 

Mass loss 9.57 mg 

Diameter of orifice 0.2965 cm 

 

 

From this data, find the vapor pressure of scandium at 1555.4 K. 

 

9. A thermalized sample of gas is one that has a distribution of molecular speeds given by 

the Maxwell-Boltzmann distribution. Considering a sample of N2 at 25 cC what fraction 

of the molecules have a speed less than 

a. the most probably speed 

b. the average sped 

c. the RMS speed? 

d. The RMS speed of helium atoms under the same conditions? 

 

10. Assume that a person has a body surface area of 2.0 m2. Calculate the number of 

collisions per second with the total surface area of this person at 25 oC and 1.00 atm. (For 

convenience, assume air is 100% N2) 

 

11. Two identical balloons are inflated to a volume of 1.00 L with a particular gas. After 12 

hours, the volume of one balloon has decreased by 0.200 L. In the same time, the volume 

of the other balloon has decreased by 0.0603 L. If the lighter of the two gases was 

helium, what is the molar mass of the heavier gas?  

 

12. Assuming it is a van der Waals gas, calculate the critical temperature, pressure and 

volume for CO2. 

 

13. Find an expression in terms of van der Waals coefficients for the Boyle temperature. 

(Hint: use the viral expansion of the van der Waals equation to find an expression for the 

second viral coefficient!) 

 

14. Consider a gas that follows the equation of state 

 

𝑝 =
𝑅𝑇

𝑉𝑚 − 𝑏
 

 

 Using a virial expansion, find an expression for the second virial coefficient. 

 

15. Consider a gas that obeys the equation of state 
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𝑝 =
𝑛𝑅𝑇

𝑉 − 𝑛𝑏
−

𝑎𝑛

𝑉
 

 

where a and b are non-zero constants. Does this gas exhibit critical behavior? If so, find 

expressions for pc, Vc, and Tc in terms of the constants a, b, and R. 

 

16. Consider a gas that obeys the equation of state 

 

𝑝𝑉 = 𝑛𝑅𝑇 + 𝑎𝑛𝑝𝑇 + 𝑛𝑏𝑝 

 

a. Find an expression for the Boyle temperature in terms of the constant a, b, and R. 

b. Does this gas exhibit critical behavior? If so, find expressions for pc, Vc, and Tc in 

terms of the constants a, b, and R. 
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