Chapter 5: The Second Law

Rudolph Clausius is kind enough in his 1879 work “The Mechanical Theory of Heat”
(Clausius, 1879) to indicate where we have been in our discussion of thermodynamics, as well as
where we are going.

“The fundamental laws of the universe which correspond to the
two fundamental theorems of the mechanical theory of heat.

1. The energy of the universe is constant.

2. The entropy of the universe tends to a maximum.’
— Rudolf Clausius, The Mechanical Theory Of Heat

’

The second law of thermodynamics, which introduces us to the topic of entropy, is
amazing in how it constrains what we can experience and what we can do in the universe. As
Sean M. Carroll, a CalTech Theoretical physicist, suggests in a 2010 interview with Wired
Magazine (Biba, 2010),

I'm trying to understand how time works. And that’s a huge
question that has lots of different aspects to it. A lot of them go
back to Einstein and spacetime and how we measure time using
clocks. But the particular aspect of time that I'm interested in is
the arrow of time: the fact that the past is different from the future.
We remember the past but we don’t remember the future. There
are irreversible processes. There are things that happen, like you
turn an egg into an omelet, but you can’t turn an omelet into an

€dg.

We, as observers of nature, are time travelers. And the constraints on what we can
observe as we move through time step from the second law of thermodynamics. But more than
just understanding what the second law says, we are interested in what sorts of processes are
possible. And even more to the point, what sorts of processes are spontaneous.

A spontaneous process is one that will occur without external forces pushing it. A process
can be spontaneous even if it happens very slowly. Unfortunately, Thermodynamics is silent on
the topic of how fast processes will occur, but is provides us with a powerful toolbox for
predicting which processes will be spontaneous. But in order to make these predictions, a new
thermodynamic law and variable is needed since the first law (which defined AU and AH) is
insufficient.

Consider the following processes:

NaOH(s) — Na*(ag) + OH (aq) AH<0
2
NaHCOs(s) — Na*(aq) + HCOs'(aq) AH>0
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Both reactions will occur spontaneously, but one is exothermic and the other endothermic. So
while it is intuitive to think that an exothermic process will be spontaneous, there is clearly more
to the picture than simply the release of energy as heat when it comes to making a process
spontaneous. The Carnot cycle (a theoretical cyclical heat engine) is a useful thought construct
which can guide an exploration of the answer the question of why a process is spontaneous.

Heat Engines

Sadi Carnot (1796 — 1832) (Mendoza, 2016), a French physicist and engineer was very
interested in the improvement of steam engines to perform the tasks needed by modern society.

Figure 1. Sadi Carnot (1796 - 1832)

In order to simplify his analysis of the inner workings of an engine, Carnot devised a useful
construct for examining what affect engine efficiency. His construct is the heat engine. The idea
behind a heat engine is that it will take energy in the form of heat, and transform it into an
equivalent amount of work.

Thermochemistry and Chemical Kinetics: The Second Law © 2021 Patrick E. Fleming - Available under
Creative Commons Attribution-Noncommercial-Share Alike license 4.0 (CC BY-NC-SA 4.0)

100


https://creativecommons.org/licenses/by-nc-sa/4.0/

Chapter 5 — The Second Law

Heat Engine

Unfortunately, such a device is impractical. As it turns out, nature prevents the complete
conversion of energy into work with perfect efficiency. This leads to an important statement of
the Second Law of Thermodynamics.

It is impossible to convert heat into an equivalent amount of work
without some other changes occurring in the universe.

As such, a more reasonable picture of the heat engine is one which will allow for losses of
energy to the surroundings.

q m—T—

| |
Heat Engine

The fraction of energy supplied to the engine that can be converted to work defines the efficiency
of the engine.

The Carnot Cycle

The Carnot cycle is a theoretical cyclic heat engine that can used to examine what is
possible for an engine for which the job is convert heat into work. For simplicity, all energy
provided to the engine occurs isothermally (and reversibly) at a temperature Tr and all of the
energy lost to the surroundings also occurs isothermally and reversibly at temperature T, In order
to insure this, the system must change between the two temperatures adiabatically.
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Heat Engine

Thus, the cycle consists of four reversible legs, two of which are isothermal, and two of
which are adiabatic.

l. Isothermal expansion from p1 and V1 to p2 and V2 at Th.
. Adiabatic expansion from p2, V2, Th to ps3, V3, Ti.

. Isothermal compression from pz and V3 to ps and V4 at T.
IV.  Adiabatic compression from ps, V4, Tito p1, V1, Th.

Plotted on a pressure-volume diagram, the Carnot cycle looks as follows:
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Because this is a closed cycle (the ending state is identical initial state) any state function must
have a net change of zero as the system moves around the cycle. Furthermore, the efficiency of
the engine can be expressed by the net amount of work the engine produces per unit of heat
supplied to power the engine.

Whet
dn

€ =

In order to examine this expression, it is useful to write down expressions fo the heat and work
flow in each of the four legs of the engine cycle.

Leg Heat Work
[ gn = NRTh In(V2/V1) -NRTh In(V2/V1)
1 0 Cv(Ti—Thn)
i qi = nNRT) In(V4/V3) -nRT; In(V4/V3)
v 0 Cv(Th—Ti)

The total amount of work done is given by the sum of terms in the thirst column. Clearly the
terms for the two adiabatic legs cancel (as they have the same magnitude, but opposite signs.) So
the total work done is given by

v, v,
Wior = —NRTyIn (7) — nRT;In (7)

1 3

The efficiency of the engine can be defined as the total work produced per unit of energy
provided by the high temperature reservoir.

IWeoel
£ =
dn

or
nRT,In (%) +nRTIn (%)
&=

nRTyIn (%)

That expression has a lot of variables, but it turns out that it can be simplified dramatically. It
turns out that by the choice of pathways connecting the states places a very important restriction
on the relative values of V1, V2, V3 and V4. To understand this, we must consider how the work
of adiabatic expansion is related to the initial and final temperatures and volumes. In Chapter 3,
it was shown that the initial and final temperatures and volumes of an adiabatic expansion are
related by
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tv Cv
ViT,® =V TR
or
474
Vi _ (Tf)R
Ve T;

Using the adiabatic expansion and compression legs (11 and V), this requires that

Cy Cy
V. TINR 1% T\ R
== (—l) and L= (—h)
V3 Th Vy T,

Since the second terms are reciprocals of one another, the first terms must be as well!

Vo Uy

v,
A simple rearrangement shows that

Vo, 13

iV

This is very convenient! It is what allows for the simplification of the efficiency expression.

_ nRTyln (%) + nRT)ln (};—:)
nRT,In (%)

becomes

nRTyIn (%) — nRT;In (%)

nRT,In (%)

Canceling nR In (?) in the numerator and denominator yields
1

T, —T,
Ty

E =
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This expression gives the maximum efficiency and depends only on the high and low
temperatures!

Also, it should be noted that the heat engine can be run backwards. By providing work to
the engine, it can be forces to draw heat from the low temperature reservoir and dissipate it into
the high temperature reservoir. This is how a refrigerator or heat pump works. The limiting
efficiency of such a device can also be calculated using the temperatures of the hot can cold
reservoirs.

Example:

What is the maximum efficiency of a freezer set to keep ice cream at a cool -10 °C, which it is
operating in a room that is 25°C? What is the minimum amount of energy needed to remove 1.0 J
from the freezer and dissipate it into the room?

Solution:
The efficiency for the refrigerator is given by

Ty-T;
8 =
T,

Converting the temperatures to an absolute scale, the efficiency can be calculated as

_ 298K - 263K

63K = 0.1331

&

This value ca be used in the following manner
energytransferred = €(WOrKrequired)
So
1.0] = 0.1331(w)
or

w=75]

It is interesting to note that any arbitrary closed cyclical process can be described as a
sum of infinitesimally small Carnot cycles, and so all of the conclusions reached for the Carnot
cycle apply to any cyclical process.

Entropy
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In addition to learning that the efficiency of a Carnot engine depends only on the high
and low temperatures, more interesting things can be derived through the exploration of this
system. For example, consider the total heat transferred in the cycle:

v, A
Qtot = NRTyIn (V ) + nRT; In (V3>

Making the substitution

,_ Vs

vV, V,

the total heat flow can be seen to be given by

Va Vs
Qtot = — NRTy In (V ) + nRT;In <V3>

It is clear that the two terms do not have the same magnitude, unless Tn = T. This is sufficient to
show that q is not a state function, since it’s net change around a closed cycle is not zero (as any
value of a state function must be.) However, consider what happens when the sum of g/T is
considered:

—nRTy In (K ) nRT;In (V )

27" f—
T, T

= —nrin(72) + nRin ()
—nnV3 nnV3

=0

This is the behavior expected for a state function! It leads to the definition of entropy in
differential form,

_ dQTev
ds = T

In general, dgrev Will be larger than dq (since the reversible pathway defines the maximum heat
flow.) So, it is easy to calculate entropy changes, as one needs only to define a reversible
pathway that connects the initial and final states, and then integrate dg/T over that pathway. And
since AS is defined using q for a reversible pathway, AS is independent of the actual path a
system follows to undergo a change.
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Calculating entropy changes

Entropy changes are fairly easy to calculate so long as one knows initial and final state.
For example, if the initial and final volume are the same, the entropy can be calculated by

assuming a reversible, isochoric pathway and determining an expression for ?q. That term can

then be integrated from the initial condition to the final conditions to determine the entropy
change.

Isothermal Changes

If the initial and final temperatures are the same, the most convenient reversible path to
use to calculate the entropy is an isothermal pathway. As an example, consider the isothermal
expansion of an ideal gas from V1 to V2. As was derived in Chapter 3,

dq = RTdV
q=n v
So dg/T is given by
dq dv
T~ "y
and so
As—jdq— RJVZdV— R1 (VZ)
=T =n . Tl nV1
Example:

Calculate the entropy change for 1.00 mol of an ideal gas expanding isothermally from a volume
of 24.4 L t0o 48.8 L.

Solution:

AS = nR1 (VZ)
= n nV

1

448 L
ol K )

AS = (1.00 mol) (8.314m’ )ln(224L

_ J
AS = 5.76 =
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Isobaric Changes

For changes in which the initial and final pressures are the same, the most convenient
pathway to use to calculate the entropy change is an isobaric pathway. In this case, it is useful to
remember that

dq = nCydT
So

dq dT

T o

Integration from the initial to final temperature is used to calculate the change in entropy. If the
heat capacity is constant over the temperature range

[ [ =t
—=n — =N n|—
r, T P r, T P,

If the temperature dependence of the heat capacity is known, it can be incorporated into the
integral. For example, if C, can be expressed as

C
Cp =a + bT +ﬁ
AS takes the form

J‘Tqu j'Tz a+bT+% .
—=n - -

which simplifies to

or

Isochoric Changes
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Similarly to the cast of constant pressure, it is fairly simple to calculate AS. Since

dq = nCydT
dT—q IS given by

dq dT

T~

And so for changes over which Cy is independent of the temperature AS is given by

¥
AS =nCyln (T_1>

Adiabatic Changes

The easiest pathway for which to calculate entropy changes is an adiabatic pathway.
Since dg = 0 for an adiabatic change, dS = 0 as well. But what if we forget this? Is there another
way to show that the entropy change for an adiabatic expansion (for example) will be zero?

The answer, of course, is that because entropy is a state function, we can define a more
convenient step-wise pathway, calculate the entropy change for each step, and show that they
add to a total entropy change of zero. Since we know the relationship between the temperatures
and volumes associated with an adiabatic expansion of an ideal gas

Cv Cv
V1 TlR = Vz TZR

a very convenient step-wise pathway will be an isochoric temperature drop followed by an
isothermal expansion. Graphically, this kind of a break down might look as follows:
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T L V1, Th)
g isocharic adiabatic
5 temperature expansion
b drop
7]
o
= \
(F
|_
Tz 4

\

isothermal expansion

| |
Volume

V4 Vo2

The entropy change for the isothermal expansion of an ideal gas from V1 to V2 is given
by

AS, = nR1 (VZ)
r =nRIn 7

And for an isochoric temperature drop, the entropy can be calculated from

AS, = CI(TZ)
V_nVnT

1

It will be useful if both terms ASt and ASv can be expressed in terms of either the temperature
change or the volume change. Using the relationship between volume and temperature derived
earlier for an adiabatic expansion, it can easily be shown that

Cy
Vo <T1> R
Vi \T,

Substituting this into the expression for ASt produces

Cy

ASy = nR1 (Tl)7
=nrin\—
T T,
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Cy

=nRIn (E)_7
T
= =) () n (7
or
AS; = —nCy In (T )
T
Finally adding the two together
AS,,; = ASy + ASy
or

T, T,
AStot = _nCV ln (T ) + nCV ln <T1> O

which is exactly what we expected since dg = 0 must hold at all points along the adiabatic
expansion pathway, and
dq
AS = f T

The entropy change for a phase change at constant pressure is given by

Phase Changes

AH phase

AS =
T

Example:
The enthalpy of fusion for water is 6.01 kJ/mol. Calculate the entropy change for 1.0 mole of ice
melting to form liquid at 273 K.

Solution:
)i
o (1.0 mol) (6010—mol)
273 K
Ji
AS = 222
K
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Comparing the System and the Surroundings

It is oftentimes important (for reasons that will be discussed in the next section) to
calculate both the entropy change of the system as well as that of the surroundings. Depending
on the size of the surroundings, they can provide or absorb as much heat as is needed for a
process without changing temperature. As such, it is oftentimes a very good approximation to
consider the changes to the surroundings as happening isothermally, even though it may not be
the case for the system (which is generally smaller.)

Example:
Consider 18.02 g (1.00 mol) of ice melting at 273 K in a room that is 298 K. Calculate AS for the
ice, the surrounding room, and of the universe. (AHss = 6.01 kJ/mol)

Solution:
For the process, Qice = -Qroom

]
q = nlAHg,s = (1.00 mol) (6010 ﬁ) = 6010
For the ice:
Qice 6010] Ji
AS;., = = =220 =
e T.. 273K
For the room:
Qroom _601()] ]
A = =) =-20..2 =
Sroom Troom 298 K 0 K

For the universe:
ASuniv = ASice + ASroom

AS, iy = 22.0 é— 20.2 %

J
ASuniv = 1.8 %

Note: ASuniv IS positive, which is characteristic of a spontaneous change!

| Example:
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A 10.0 g piece of metal (C = 0.250 J/g °C) initially at 95 °C is placed in 25.0 g of water initially
at 15 °C in an insulated container. Calculate the final temperature of the metal and water once the
system has reached thermal equilibrium. Also, calculate the entropy change for the metal, the
water, and the entire system.

Solution:

Heat will be transferred from the hot metal to the cold water. Since it has nowhere else to go, the
final temperature can be calculated from the expression

Qw = -Om
where qw Is the heat absorbed by the water, and gm is the heat lost by the metal. And since
q=mCAT

it follows that

(25.0 g) (4184 1) (T; — 15 °C) = —(10.0 9) (0250 L) (77 — 95 °C)

J
g°c
A bit of algebra determines the final temperature to be:
Tr=16.9 °C.

To get the entropy changes, use the expression:

AS = mC1 (Tf)
=m n Ti

So, for the water:

289.9 K)

AS,yater = (25.0 ) (4.184 gLK) ln( T

J
AS = 0.689—
water K

And for the metal:

J 2899 K
ASmetal = (100 g) (0250 g_K) 11’1( 368 K )

ASyorar = —0.596%

For the system:
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ASsys = ASyater + ASmetal

ASgys = 0.689% — 0.596%
AS,,. = 00932
sys — Y- K

Note: The total entropy change is positive, suggesting that this will be a spontaneous process.
This should make some sense since one expects heat to flow from the hot metal to the cool water
rather than the other way around. Also, note that the sign of the entropy change is positive for the
part of the system that is absorbing the heat, and negative for the part losing the heat.

In summary, AS can be calculated for a number of pathways fairly conveniently.

Pathway
Adiabatic 0
rev Vo \ =
Isothermal T nR In (V—l)
. T. q
Isobaric nC,In (—2) ASeyy = — =25
Ty Tsyrr
T.
Isochoric nCy In (_2)
Ty
AH
Phase Change I;f‘ase

“for an ideal gas
And

ASuniv = ASsys + ASsurr.
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This calculation is important as ASuniv provides the criterion for spontaneity for which we were
searching from the outset. This also suggests a new way to state the second law:

The entropy of the universe increases in any spontaneous change.

If we think of “the direction of spontaneous” to be the natural direction of chance, we can see
that entropy and the second law are tied inexorably with the natural direction of the flow of time.
Basically, we can expect the entropy of the universe to continue to increase as time flows into the
future. We can overcome this natural tendency to greater entropy by doing work on a system.
This is why it requires such great effort, for example, to straighten a messy desk, but little effort
for the desk to get messy over time.

The Second Law can be summed up in a very simple mathematical expression called the
Clausius Inequality.

ASuniverse <0

which must be true for any spontaneous process. It isn’t the most convenient criterion for
spontaneity, but it will do for now. In the next chapter, we will derive a criterion which is more
useful to us as chemists, who would rather focus on the system itself rather than both the system
and its surroundings. Another statement of the Clausius theorem is

dq
— <
fT <0

with the only condition of the left hand side equaling zero is if the system transfers all heat
reversibly.

Entropy and Chaos

A common interpretation of entropy is that it is somehow
a measure of chaos or randomness. There is some utility in that
concept. Given that entropy is a measure of the dispersal of
energy in a system, the more chaotic a system is, the greater the
dispersal of energy will be, and thus the greater the entropy will
be.

Ludwig Boltzmann (1844 — 1906) (O'Connor &
Robertson, 1998) understood this concept well, and used it to
derive a statistical approach to calculating entropy. Boltzmann
proposed a method for calculating the entropy of a system based
on the number of energetically equivalent ways a system can be
constructed.

Figure 2. Ludwig Boltzmann (1844 -
1906)

Thermochemistry and Chemical Kinetics: The Second Law © 2021 Patrick E. Fleming - Available under
Creative Commons Attribution-Noncommercial-Share Alike license 4.0 (CC BY-NC-SA 4.0)

115



https://creativecommons.org/licenses/by-nc-sa/4.0/

Chapter 5 — The Second Law

Boltzmann proposed an expression, which in its modern form is:

S = kB ln(W)

This rather famous equation is etched on Botlzmann’s grave marker in commemoration of his

profound contributions to the science of thermodynamics.

LVDWIG
DORTEMANN
L

Example:

Calculate the entropy of a carbon monoxide crystal, containing 1.00 mol of CO, and assuming

that the molecules are randomly oriented in one of two equivalent orientations.

Solution:
Using the Boltzmann formula

S = Nkgln(W)
And using W = 2, the calculation is straightforward.

6.022 x 1023

S = (1.00 mol -
mol

) (1.38 X 10—23%) In(2)

_ J
S = 5.76;
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The Third Law of Thermodynamics

One important consequence of Botlzmann’s proposal is that a perfectly ordered crystal
(i.e. one that has only one energetic arrangement in its lowest energy state) will have an entropy
of 0. This makes entropy qualitatively different than other thermodynamic functions. For
example, in the case of enthalpy, it is impossible have a zero to the scale without setting an
arbitrary reference (which is that the enthalpy of formation of elements in their standard states is
zero.) But entropy has a natural zero! It is the state at which a system has perfect order. This also
has another important consequence, in that it suggests that there must also be a zero to the
temperature scale. These consequences are summed up in the Third Law of Thermodynamics.

The entropy of a perfectly ordered crystal at 0 K is zero.

This also suggests that absolute molar entropies can be calculated by

s= [ Car
[

where C is the heat capacity. An entropy value determined in this manner is called a Third Law
Entropy.

Naturally, the heat capacity will have some temperature dependence. It will also change
abruptly if the substance undergoes a phase change.

Unfortunately, it is exceedingly difficult to measure heat capacities very near zero K.
Fortunately, many substances follow the Debye Extrapolation in that at very low temperatures,
their heat capacities are proportional to T3. Using this assumption, we have a temperature
dependence model that allows us to extrapolate absolute zero based on the heat capacity
measured at as low a temperature as can be found.

Example:
SiO; is found to have a molar heat capacity of 0.777 J mol™* K at 15 K (Yamashita, et al.,
2001). Calculate the molar entropy of SiO- at 15 K.

Solution:
Using the Debye model, the heat capacity is given by

Cp, = aT?

The value of a can be determined by

J _ 3
0777 ——= a (15K)
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]
mol K*

151(
5= ( )dT
f T?dT

J 315K
$=0.000230 —— | =
mol K4[3L

= 0.000230

The entropy is then calculated by

S=0. 000230

_ 0.000230 J
- 3 mol K*

]
mol K

(15 K)3

S = 0.259

Calculating a third Law Entropy

Start at 0 K, and go from there!

Adiabatic Compressibility

In Chapter 4, we learned about the isothermal compressibility, kr, which is defined as

10V
fr = __(ap)

KT IS a very useful quantity, as it can be measured for many different substances and tabulated.
Also, as we will see in the next chapter, it can be used to evaluate several different partial
derivatives involving thermodynamic variables.

In his seminal work, Philosophiae Naturalis Principia Mathematica (Newton, 1723),
Isaac Newton (1643 - 1727) (Doc) calculated the speed of sound through air, assuming that
sound was carried by isothermal compression waves. His calculated value of 949 m/s was about
15% smaller than experimental determinations. He accounted for the difference by pointing to
“non-ideal effects”. But it turns out that his error, albeit an understandable one (since sound
waves do not appear to change bulk air temperatures) was that the compression waves are
adiabatic, rather than isothermal. As such, there are small temperature oscillations that occur due
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to the adiabatic compression followed by expansion of the gas carrying the sound waves. The
oversite was correct by Pierre-Simon Laplace (1749 — 1827) (O'Connor & Robertson, Pierre-
Simon Laplace, 1999).

LaPlace modeled the compression waves using the adiabatic compressibility, ks defined
by

Since the entropy is defined by

— dQTev

ds T

it follows that any adiabatic pathway (dqg = 0) is also isentropic (dS = 0), or proceeds at constant
entropy.

A couple of interesting conclusions can be reached by following the derivation of an
expression for the speed of sound where the sound waves are modeled as adiabatic compression

waves. We can begin by expanding the description of ks by using Partial Derivative
Transformation Type Il. Applying this, the adiabatic compressibility can be expressed

1 <6V) (65)
“s=v\as/,\op/,
or by using transformation type |
(%)
1\dp/,
S
v/,

Using a simple chain rule, the partial derivatives can be expanded to get something a little easier
to evaluate:

The utility here is that

as C as C
(—) == and (_) )
arly T or/p T
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This means that

(5)
CV 1 ap v

Ks =—| =
“\"(5),

Simplifying what is in the parenthesis yields
Cy 1(6T) (GV)
Ks=—|==—] |==
C, \V\ap/,\oT/,
_ Gy 1 ((’)V)
CC,\ V\ap/,
Cv

=—Krg
Cp

As will be shown in the next chapter, C, is always bigger than Cy, so ks is always smaller than
KT.

But there is more! We can use this methodology to revisit how pressure affects volume
along an adiabat. In order to do this, we would like to evaluate the partial derivative

(3»)
— ) =2
op/g

This can be expanded in the same way as above

(Z_Z)S - (ap>

And further expand

And as before, noting that (g—i) =% and (as) = % this can be simplified to
4 p
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(6V) Gy (6V) <6T>
dp C, \0T/, \0p/,,

S
_ Gy (GV)
Cp \Op/

Or defining y = C,/Cy, this can be easily rearranged to

(E)V) (E)V)

Y\77) = \5:

dp/ op/ .

The right-hand derivative is easy to evaluate if we assume a specific equation of state. For an

ideal gas,

<6V) B nRT_ vV

W, ¥y

Substitution yields

<6V)_V
yﬁps p

which is now looking like a form that can be integrated. Separation of variables yields

dv  dp

V7=?

And integration (assuming that y is independent of volume) yields

V2 dv Pz dp
[a-p
V1 4 p. P

or

In (&) =1ln (&>
Yy, P,

which is easily manipulated to show that
pV) =V or pV' = constant
which is what we previously determined for the behavior of an ideal gas along an adiabat.
Finally, it should be noted that the correct expression for the speed of sound is given by
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1

v d =
soun p KS

where p is the density of the medium. For an ideal gas, this expression becomes

YRT
Usound = 7

where M is the molar mass of the gas. Isaac Newton’s derivation, based on the idea that sound
waves involved isothermal compressions, would produce a result which is missing the factor of
v, accounting for the systematic deviation from experiment which he observed.
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Learning Objectives

After mastering the material presented in this chapter, one will be able to:

1. Describe a Carnot engine and derive a relationship for its efficiency of converting heat
into work, in terms of the two temperatures at which the engine operates.

2. Define entropy and be able to calculate entropy changes for systems (and the
surroundings) undergoing changes which are definable as following various pathways,
including constant temperature, constant pressure, constant volume, and adiabatic
pathways.

3. Relate entropy to disorder in a crystal based on the number of equivalent orientations a
single formula unit may take within the crystal.

4. State the Third Law of Thermodynamics, and use it to calculate total entropies for
substances at a given temperature.

5. Understand how isothermal compressibility differs from adiabatic compressibility and
relate that difference to the measurement of the speed of sound waves traveling through a
gas medium.

Problems

1. What is the minimum amount of work needed to remove 10.0 J of energy from a freezer
at -10.0 °C, depositing the energy into a room that is 22.4 °C?

2. Consider the isothermal, reversible expansion of 1.00 mol of a monatomic ideal gas (Cv
=3/2 R) from 10.0 L to 25.0 L at 298 K. Calculate g, w, AU, AH, and AS for the
expansion.

3. Consider the isobaric, reversible expansion of 1.00 mol of a monatomic ideal gas (Cp =
5/2 R) from 10.0 L to 25.0 L at 1.00 atm. Calculate g, w, AU, AH, and AS for the
expansion.

4. Consider the isochoric, reversible temperature increase of 1.00 mol of a monatomic ideal

gas (Cv = 3/2 R) occupying 25.0 L from 298 K to 345 K. Calculate g, w, AU, AH, and AS
for the process.
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10.

11.

Consider the adiabatic expansion of 1.00 mol of a monatomic ideal gas (Cv = 3/2 R) from
10.0 L at 273 K to a final volume of 45.0 L. Calculate AT, q, w, AU, AH, and AS for the
expansion.

15.0 g of ice (AHfus = 6.009 kJ/mol) at 0 °C sits in a room that is at 21 °C. The ice melts
to form liquid at 0 °C. Calculate the entropy change for the ice, the room, and the
universe. Which has the largest magnitude?

15.0 g of liquid water (Cp = 75.38 J mol™ °C™?) at 0 °C sits in a room that is at 21 °C. The
liquid warms from 0 °C to 21 °C. Calculate the entropy change for the liquid, the room,
and the universe. Which has the largest magnitude?

Calculate the entropy change for taking 12.0 g of H.O from the solid phase (C, = 36.9 J
mol? K1) at -12.0 °C to liquid (Cp = 75.2 J mol™ K1) at 13.0 °C. The enthalpy of fusion
for water is AHrs = 6.009 kJ/mol.

Using data found at

http://chem.libretexts.org/Reference/Reference Tables/Thermodynamics Tables/T1%3A
Standard_Thermodynamic_Quantities, calculate the standard reaction entropies (AS°)

for the following reactions at 298 K.

CH3CH20H(l) + 3 O2(g) = 2 CO2(g) + 3 H20(1)
C12H22011(s) + 12 O2 = 12 CO2(g) _ 11 HO(1)
2 POCIs(l) = 2 PCl3(l) + O2(g)

2 KBr(s) + Clz(g) = 2 KCI(s) + Bry(l)

SiH4(g) + 2 ClI(g) = SiCl4(l) + 2 H2(g)

®o0 oW

1.00 mole of an ideal gas is taken through a cyclic process involving three steps:

I. Isothermal expansion from V1 to V2 at Ty
Il. Isochoric heating from, T1 to T2 at V2
I11. Adiabatic compression from V2 to V1

o

Graph the process on a V-T diagram.

b. Find g, w, AU, and AS for each leg. (If you want, you can find AH too!)

c. Use the fact that AS for the entire cycle must be zero (entropy being a state
function and all ...), determine the relationship between V1 and V2 in terms of C,,
Tiand Te.

2.00 moles of a monatomic ideal gas (Cv = 3/2 R) initially exert a pressure of 1.00 atm at
300.0 K. The gas undergoes the following three steps, all of which are reversible: I.
isothermal compression to a final pressure of 2.00 atm, II. Isobaric temperature increase
to a final temperature of 400.0 K, and I11. A return to the initial state along a pathway in
which
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p=a+bT

where a and b are constants. Sketch the cycle on a pressure-temperature plot, and
calculate AU and AS for each of the legs. Are AU and AS zero for the sum of the three
legs?

12. A 10.0 g piece of iron (C = 0.443 J/g °C) initially at 97.6 °C is placed in 50.0 g of water
(C =4.184 J/g °C) initially at 22.3 °C in an insulated container. The system is then
allowed to come to thermal equilibrium. Assuming no heat flow to or from the
surroundings, calculate

a. the final temperature of the metal and water
b. the change in entropy for the metal

c. the change in entropy for the water

d. the change in entropy for the universe

13. Considers a crystal of CHFCIBr as having four energetically equivalent orientations for
each molecule. What is the expected residual entropy at 0 K for 2.50 mol of the
substance?

14. A sample of a certain solid is measured to have a constant pressure heat capacity of 0.436
Jmol? K*at 10.0 K. Assuming the Debeye extrapolation model

Cy(T) = aT?

holds at low temperatures, calculate the molar entropy of the substance at 12.0 K.
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