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Chapter 4: Putting the First Law to Work 
 

 As has been seen in previous chapters, may important thermochemical quantities can be 

expressed in terms of partial derivatives. Two important examples are the molar heat capacities 

Cp and CV which can be expressed as 

 

𝐶𝑝 = (
𝜕𝐻

𝜕𝑇
)

𝑝
  𝐶𝑉 = (

𝜕𝑈

𝜕𝑇
)

𝑉
 

 

These are properties that can be measured experimentally and tabulated for many substances. 

These quantities can be used to calculate changes in quantities since they represent the slope of a 

surface (H or U) in the direction of the specified path (constant p or V). This allows us to use the 

following kinds of relationships: 

 

𝑑𝐻 = (
𝜕𝐻

𝜕𝑇
)

𝑝
𝑑𝑇  ∆𝐻 = ∫ (

𝜕𝐻

𝜕𝑇
)

𝑝
𝑑𝑇 

 

Because thermodynamics is kind enough to deal in a number of state variables, the functions that 

define how those variable change must behave according to some very well determined 

mathematics. This is the true power of thermodynamics! 

 

Total Differentials 
 

 The fact that we can define the constant volume heat capacity as (
𝜕𝑈

𝜕𝑇
)

𝑉
 suggests that the 

internal energy depends very intimately on two variables: volume and temperature. In fact, we 

will se that for a single component system, state variables are always determined when two state 

variables are defined. In the case of internal energy, we might write 

 

U=f(V,T)  or   U(V,T) 

 

This suggests that the way to change U is to change either V or T (or both!) And if there is a 

mathematical function that relates the internal energy to these two variables, it should easy to see 

how it changes when either (or both!) are changed. This can be written as a total differential. 

 

𝑑𝑈 = (
𝜕𝑈

𝜕𝑉
)

𝑇
𝑑𝑉 + (

𝜕𝑈

𝜕𝑇
)

𝑉
𝑑𝑇 

 

Even without knowing the actually mathematical function relating the variables to the property, 

we can imagine how to calculate changes in the property from this expression. 

 

Δ𝑈 = ∫ (
𝜕𝑈

𝜕𝑉
)

𝑇
𝑑𝑉

𝑉2

𝑉1

+ ∫ (
𝜕𝑈

𝜕𝑇
)

𝑉
𝑑𝑇

𝑇2

𝑇1
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In words, this implies that we can think of a change in U occurring due to an isothermal change 

followed by an isochoric change. And all we need to know is the slope of the surface in each 

pathway direction. 

 

 There are a couple of very important experiments people have done to explore the 

measurement of those kinds of slopes. Understanding them, it turns out, depends on two very 

important physical properties of substances. 

 

Exact Differentials 
 

 We have seen that the total differential of U(V, T) can be expressed as 

 

𝑑𝑈 = (
𝜕𝑈

𝜕𝑉
)

𝑇
𝑑𝑉 + (

𝜕𝑈

𝜕𝑇
)

𝑉
𝑑𝑇 

 

In general, if a differential can be expressed as  

 

𝑑𝑓(𝑥, 𝑦) = 𝑃𝑑𝑥 + 𝑄𝑑𝑦 

 

the differential will be an exact differential if it follows the Euler relation 

 

(
𝜕𝑃

𝜕𝑦
)

𝑥

= (
𝜕𝑄

𝜕𝑥
)

𝑦
 

 

 In order to illustrate this concept, consider p(V, T) using the ideal gas law. 

 

𝑝 =
𝑅𝑇

𝑉
 

 

The total differential of p can be written 

 

𝑑𝑝 = (−
𝑅𝑇

𝑉2
) 𝑑𝑉 + (

𝑅

𝑉
) 𝑑𝑇 

 

Does this expression follow the Euler relation? Let’s see! 

 

[
𝜕

𝜕𝑇
(−

𝑅𝑇

𝑉2
)]

𝑉
= [

𝜕

𝜕𝑉
(

𝑅

𝑉
)]

𝑇
 

 

(−
𝑅

𝑉2
) = (−

𝑅

𝑉2
) 
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So it worked! dp is, in fact, an exact differential. This will be the case for all of the 

thermodynamic functions that are state functions. 

Isothermal Compressibility (T) 
 

 A very important property of a substance is how compressible it is. Gases are very 

compressible, so when subjected to high pressures, their volumes decrease significantly (think 

Boyle’s Law!) Solids and liquids however are not as compressible. However, they are not 

entirely uncompressible! High pressure will lead to a decrease in volume, even if it is only slight. 

And, of course, different substances are more compressible than others. 

 

 In order to quantify just how compressible substances are, it is necessary to define the 

property. The isothermal compressibility is defined by the fractional differential change in 

volume due to a change in pressure. 

 

𝜅𝑇 ≡ −
1

𝑉
(

𝜕𝑉

𝜕𝑝
)

𝑇

 

 

The negative sign is important in order to keep the value of T positive, since an increase in 

pressure will lead to a decrease in volume. The 1/V term is needed to make the property 

intensive so that it can be tabulated in a useful manner. 

 

Isobaric Thermal Expansivity () 
 

 Another very important property of a substance is how its volume will respond to 

changes in temperature. Again, gases respond profoundly to changes in temperature (think 

Charles’ Law!) whereas solids and liquid will have more modest (but not negligible) responses to 

changes in temperature. (For example, If mercury or alcohol didn’t expand with increasing 

temperature, we wouldn’t be able to use those substances in thermometers.) 

 

 The definition of the isobaric thermal expansivity (or sometimes called the expansion 

coefficient) is 

 

𝛼 ≡
1

𝑉
(

𝜕𝑉

𝜕𝑇
)

𝑝
 

 

As was the case with the compressibility factor, the 1/V term is needed to make the property 

intensive, and thus able to be tabulated in a useful fashion. In the case of expansion, volume 

tends to increase with increasing temperature, so the partial derivative is positive. 

 

Deriving an expression for a partial derivative.  

Partial Derivative Transformation Type I 

 

Consider a system that is described by three variables, and for which one can write a 
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mathematical constraint on the variables  

 

F(x, y, z) = 0 

 

Under these circumstances, one can specify the state of the system varying only two parameters 

independently because the third parameter will have a fixed value. As such one could define two 

functions: 

 

z(x, y)  and   y(x,z) 

 

This allows one to write the total differentials for dz and dy as follows 

 

𝑑𝑧 = (
𝜕𝑧

𝜕𝑥
)

𝑦
𝑑𝑥 + (

𝜕𝑧

𝜕𝑦
)

𝑥
𝑑𝑦  and  𝑑𝑦 = (

𝜕𝑦

𝜕𝑥
)

𝑧
𝑑𝑥 + (

𝜕𝑦

𝜕𝑧
)

𝑥
𝑑𝑧 

 

Substituting the second expression into the first, 

 

𝑑𝑧 = (
𝜕𝑧

𝜕𝑥
)

𝑦
𝑑𝑥 + (

𝜕𝑧

𝜕𝑦
)

𝑥

[(
𝜕𝑦

𝜕𝑥
)

𝑧
𝑑𝑥 + (

𝜕𝑦

𝜕𝑧
)

𝑥
𝑑𝑧] 

 

𝑑𝑧 = (
𝜕𝑧

𝜕𝑥
)

𝑦
𝑑𝑥 + (

𝜕𝑧

𝜕𝑦
)

𝑥

(
𝜕𝑦

𝜕𝑥
)

𝑧
𝑑𝑥 + (

𝜕𝑧

𝜕𝑦
)

𝑥

(
𝜕𝑦

𝜕𝑧
)

𝑥
𝑑𝑧 

 

If the system undergoes a change following a pathway where x is held constant (dx = 0), this 

expression simplifies to 

 

𝑑𝑧 = (
𝜕𝑧

𝜕𝑦
)

𝑥

(
𝜕𝑦

𝜕𝑧
)

𝑥
𝑑𝑧 

 

And so for changes for which dz ≠ 0, 

 

(
𝜕𝑧

𝜕𝑦
)

𝑥

=
1

(
𝜕𝑦
𝜕𝑧

)
𝑥

 

 

This reciprocal rule is very convenient in the manipulation of partial derivatives. But it can also 

be derived in a straight-forward, albeit less rigorous, manner. Begin by writing 

 

z(x,y) ➔ 𝑑𝑧 = (
𝜕𝑧

𝜕𝑥
)

𝑦
𝑑𝑥 + (

𝜕𝑧

𝜕𝑦
)

𝑥
𝑑𝑦 

 

Now, divide both sides by dz and constrain to constant x. 
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𝑑𝑧

𝑑𝑧
|

𝑥
= (

𝜕𝑧

𝜕𝑥
)

𝑦

𝑑𝑥

𝑑𝑧
|

𝑥
+ (

𝜕𝑧

𝜕𝑦
)

𝑥

𝑑𝑦

𝑑𝑧
|

𝑥
 

 

Noting that 

 
𝑑𝑧

𝑑𝑧
|

𝑥
= 1 and  

𝑑𝑥

𝑑𝑧
|

𝑥
= 0 and 

𝑑𝑦

𝑑𝑧
|

𝑥
= (

𝜕𝑦

𝜕𝑧
)

𝑥
 

 

The result is 

 

1 = (
𝜕𝑧

𝜕𝑦
)

𝑥

(
𝜕𝑦

𝜕𝑧
)

𝑥
 

 

or 

 

(
𝜕𝑧

𝜕𝑦
)

𝑥

=
1

(
𝜕𝑦
𝜕𝑧

)
𝑥

 

 

This “formal” method of partial derivative manipulation is convenient and useful, although it is 

not mathematically rigorous. However, it does work for the kind of partial derivatives 

encountered in thermodynamics because the variables are state variables and the differentials are 

exact. 

 

 

Deriving an expression for a partial derivative.  

Partial Derivative Transformation Type II 

 

Consider a system that is described by three variables, and for which one can write a 

mathematical constraint on the variables  

 

F(x, y, z) = 0 

 

Under these circumstances, one can specify the state of the system varying only two parameters 

independently because the third parameter will have a fixed value. As such one could define two 

functions: 

 

z(x, y)  and  y(x,z) 

 

This allows one to write the total differentials for dz and dy as follows 

 

𝑑𝑧 = (
𝜕𝑧

𝜕𝑥
)

𝑦
𝑑𝑥 + (

𝜕𝑧

𝜕𝑦
)

𝑥
𝑑𝑦  and  𝑑𝑦 = (

𝜕𝑦

𝜕𝑥
)

𝑧
𝑑𝑥 + (

𝜕𝑦

𝜕𝑧
)

𝑥
𝑑𝑧 

 

Substituting the second expression into the first, 
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𝑑𝑧 = (
𝜕𝑧

𝜕𝑥
)

𝑦
𝑑𝑥 + (

𝜕𝑧

𝜕𝑦
)

𝑥

[(
𝜕𝑦

𝜕𝑥
)

𝑧
𝑑𝑥 + (

𝜕𝑦

𝜕𝑧
)

𝑥
𝑑𝑧] 

 

𝑑𝑧 = (
𝜕𝑧

𝜕𝑥
)

𝑦
𝑑𝑥 + (

𝜕𝑧

𝜕𝑦
)

𝑥

(
𝜕𝑦

𝜕𝑥
)

𝑧
𝑑𝑥 + (

𝜕𝑧

𝜕𝑦
)

𝑥

(
𝜕𝑦

𝜕𝑧
)

𝑥
𝑑𝑧 

 

If the system undergoes a change following a pathway where z is held constant (dz = 0), this 

expression simplifies to 

 

0 = (
𝜕𝑧

𝜕𝑥
)

𝑦
𝑑𝑥 + (

𝜕𝑧

𝜕𝑦
)

𝑥

(
𝜕𝑦

𝜕𝑥
)

𝑧
𝑑𝑥 

 

And so for and changes in which dx ≠ 0 

 

(
𝜕𝑧

𝜕𝑥
)

𝑦
= − (

𝜕𝑧

𝜕𝑦
)

𝑥

(
𝜕𝑦

𝜕𝑥
)

𝑧
 

 

This cyclic permutation rule is very convenient in the manipulation of partial derivatives. But it 

can also be derived in a straight-forward, albeit less rigorous, manner. Begin by writing 

 

z(x,y) ➔ 𝑑𝑧 = (
𝜕𝑧

𝜕𝑥
)

𝑦
𝑑𝑥 + (

𝜕𝑧

𝜕𝑦
)

𝑥
𝑑𝑦 

 

Now, divide both sides by dx and constrain to constant z. 

 
𝑑𝑧

𝑑𝑥
|

𝑧
= (

𝜕𝑧

𝜕𝑥
)

𝑦

𝑑𝑥

𝑑𝑥
|

𝑧
+ (

𝜕𝑧

𝜕𝑦
)

𝑥

𝑑𝑦

𝑑𝑥
|

𝑧
 

 

Note that 

 
𝑑𝑧

𝑑𝑥
|

𝑧
= 0 and  

𝑑𝑥

𝑑𝑥
|

𝑧
= 1 and  

𝑑𝑦

𝑑𝑥
|

𝑧
= (

𝜕𝑦

𝜕𝑥
)

𝑧
 

 

The expression now becomes 

 

0 = (
𝜕𝑧

𝜕𝑥
)

𝑦
+ (

𝜕𝑧

𝜕𝑦
)

𝑥

(
𝜕𝑦

𝜕𝑥
)

𝑧
 

 

which is easily rearranged to  

 

(
𝜕𝑧

𝜕𝑥
)

𝑦
= − (

𝜕𝑧

𝜕𝑦
)

𝑥

(
𝜕𝑦

𝜕𝑥
)

𝑧
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This type of transformation is very convenient, and will be used often in the manipulation of 

partial derivatives in thermodynamics. 

 

 

Example: 

Derive an expression for 
𝛼

𝜅𝑇
. 

 

From the definitions: 

 

𝛼 =
1

𝑉
(

𝜕𝑉

𝜕𝑇
)

𝑝
  and   𝜅𝑇 = −

1

𝑉
(

𝜕𝑉

𝜕𝑝
)

𝑇
 

 

So 

 

𝛼

𝜅𝑇
=

1
𝑉 (

𝜕𝑉
𝜕𝑇

)
𝑝

−
1
𝑉

(
𝜕𝑉
𝜕𝑝

)
𝑇

 

 

Simplifying  (canceling the 1/V terms and using transformation Type I to invert the partial 

derivative in the denominator) yields 

 
𝛼

𝜅𝑇
= − (

𝜕𝑉

𝜕𝑇
)

𝑝
(

𝜕𝑝

𝜕𝑉
)

𝑇
 

 

Applying Transformation Type II give the final result: 

 
𝛼

𝜅𝑇
= (

𝜕𝑝

𝜕𝑇
)

𝑉
 

 

 

 

The Joule Experiment 
 

 Going back to the expression for changes in internal energy that stems from assuming 

that U is a function of V and T (or U(V, T) for short) 

 

𝑑𝑈 = (
𝜕𝑈

𝜕𝑉
)

𝑇
𝑑𝑉 + (

𝜕𝑈

𝜕𝑇
)

𝑉
𝑑𝑇 

 

one quickly recognizes one of the terms as the constant volume heat capacity, CV. And so the 

expression can be re-written 
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𝑑𝑈 = (
𝜕𝑈

𝜕𝑉
)

𝑇
𝑑𝑉 + 𝐶𝑉𝑑𝑇 

 

But what about the other term? What is (
𝜕𝑈

𝜕𝑉
)

𝑇
? The partial derivative is a coefficient called the 

“internal pressure”, and given the symbol T. 

 

𝜋𝑇 ≡ (
𝜕𝑈

𝜕𝑉
)

𝑇
 

 

James Prescott Joule (1818-1889) (Encyclopedia Brittannica, 2016)  recognized that T should 

have units of pressure (Energy/volume = pressure) and designed an experiment to measure it.  

 

 
 

He immersed two copper spheres, A and B, connected by a stopcock. Sphere A is filled with a 

sample of gas while sphere B was evacuated. The idea was that when the stopcock was opened, 

the gas in sphere A would expand (V > 0) against the vacuum in sphere B (doing no work since 

pext = 0. The change in the internal energy could be expressed 

 

𝑑𝑈 = 𝜋𝑇𝑑𝑉 + 𝐶𝑉𝑑𝑇 

 

But also, from the first law of thermodynamics 

 

𝑑𝑈 = 𝑑𝑞 + 𝑑𝑤 

 

Equating the two 

 

𝜋𝑇𝑑𝑉 + 𝐶𝑉𝑑𝑇 = 𝑑𝑞 + 𝑑𝑤 

 

and since dw = 0 
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𝜋𝑇𝑑𝑉 + 𝐶𝑉𝑑𝑇 = 𝑑𝑞 

 

Joule concluded that dq = 0 (and dT = 0 as well) since he did not observe a temperature change 

in the water bath which could only have been caused by the metal spheres either absorbing or 

emitting heat. And because dV > 0 for the gas that underwent the expansion into an open space, 

T must also be zero! In truth, the gas did undergo a temperature change, but it was too small to 

be detected within his experimental precision. Later, we (once we develop the Maxwell 

Relations) will show that 

 

(
𝜕𝑈

𝜕𝑉
)

𝑇
= 𝑇 (

𝜕𝑝

𝜕𝑇
)

𝑉
− 𝑝 

 

For an ideal gas p = RT/V, so it is easy to show that 

 

(
𝜕𝑝

𝜕𝑇
)

𝑉
=

𝑅

𝑉
 

 

So  

 

(
𝜕𝑈

𝜕𝑉
)

𝑇
=

𝑅𝑇

𝑉
− 𝑝 

 

And since RT/V = p 

 

(
𝜕𝑈

𝜕𝑉
)

𝑇
= 𝑝 − 𝑝 = 0 

 

So while Joule’s observation was consistent with limiting ideal behavior, his result was really an 

artifact of his experimental uncertainty masking what actually happened. 

 

 For a van der Waals gas, 

 

𝑝 =
𝑅𝑇

𝑉 − 𝑏
−

𝑎

𝑉2
 

 

So 

 

(
𝜕𝑝

𝜕𝑇
)

𝑉
=

𝑅

𝑉 − 𝑏
 

 

And 
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(
𝜕𝑈

𝜕𝑉
)

𝑇
= 𝑇 (

𝑅

𝑉 − 𝑏
) − 𝑝 

 

Substitution of the expression for p into this relationship yields 

 

(
𝜕𝑈

𝜕𝑉
)

𝑇
=

𝑎

𝑉2
 

 

In general, it can be shown that  

 

(
𝜕𝑝

𝜕𝑇
)

𝑉
=

𝛼

𝜅𝑇
 

 

And so the internal pressure can be expressed entirely in terms of measurable properties 

 

(
𝜕𝑈

𝜕𝑉
)

𝑇
= 𝑇

𝛼

𝜅𝑇
− 𝑝 

 

and need not apply to only gases! 

 

The Joule-Thomson Effect 
 

 In 1852, working with William Thomson (who would later become Lord Kelvin), Joule 

conducted an experiment in which they pumped gas at a steady rate through a lead pipe that was 

cinched to create a construction. On the upstream side of the constriction, the gas was at a higher 

pressure than on the downstream side of the constriction. Also, the temperature of the gas was 

carefully monitored on either side of the construction. The cooling that they observed as the gas 

expanded from a high pressure region to a lower pressure region was extremely important and 

lead to a common design of modern refrigerators. 

 

Not all gases undergo a cooling effect upon expansion. Some gases, such as hydrogen 

and helium, will experience a warming effect upon expansion under conditions near room 

temperature and pressure. The direction of temperature change can be determined by measuring 

the Joule-Thomson coefficient, JT. This coefficient has the definition 

 

𝜇𝐽𝑇 ≡ (
𝜕𝑇

𝜕𝑝
)

𝐻

 

 

Schematically, the Joule-Thomson coefficient can be measured by measuring the temperature 

drop or increase a gas undergoes for a given pressure drop. The apparatus is insulated so that no 

heat can be transferred in or out, making the expansion isenthalpic. 
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The typical behavior of the Joule-Thomson coefficient can be summarized in the 

following diagram. At the combinations of T and p for which JT > 0 (inside the shaded region), 

the sample will cool upon expansion. At those p and T conditions outside of the shaded region, 

where JT < 0, the gas will undergo a temperature increase upon expansion. And along the 

boundary, a gas will undergo neither a temperature increase not decrease upon expansion. For a 

given pressure, there are typically two temperatures at which JT changes sign. These are the 

upper and lower inversion temperatures. 

 

 
 

 Using the tools of mathematics, it is possible to express the Joule-Thomson coefficient in 

terms of measurable properties. Consider enthalpy as a function of pressure and temperature: 

H(p, T). This suggests that the total differential dH can be expressed 
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𝑑𝐻 = (
𝜕𝐻

𝜕𝑝
)

𝑇

𝑑𝑝 + (
𝜕𝐻

𝜕𝑇
)

𝑝
𝑑𝑇 

 

It will be shown later (again, once we develop the Maxwell Relations) that 

 

(
𝜕𝐻

𝜕𝑝
)

𝑇

= −𝑇 (
𝜕𝑉

𝜕𝑇
)

𝑝
+ 𝑉 

 

A simple substitution shows 

 

(
𝜕𝐻

𝜕𝑝
)

𝑇

= −𝑇𝑉𝛼 + 𝑉 = 𝑉(1 − 𝑇𝛼) 

 

So 

 

𝑑𝐻 = 𝑉(1 − 𝑇𝛼)𝑑𝑝 + 𝐶𝑝𝑑𝑇 

 

For an ideal gas,  = 1/T, so 

 

𝑑𝐻 = 𝑉 (1 − 𝑇
1

𝑇
) 𝑑𝑝 + 𝐶𝑝𝑑𝑇 

 

which causes the first term to vanish. So for constant enthalpy expansion (dH = 0), there can be 

no change in temperature (dT = 0). This will mean that gases will only show non-zero values for 

JT only because they deviate from ideal behavior! 

 

Example: 

Derive an expression for JT in terms of , Cp, V, and T. 

 

Solution: Using H(p, T): 

 

𝑑𝐻 = (
𝜕𝐻

𝜕𝑝
)

𝑇

𝑑𝑝 + (
𝜕𝐻

𝜕𝑇
)

𝑝
𝑑𝑇 

 

Dividing by dp and constraining to constant H: 

 
𝑑𝐻

𝑑𝑝
|

𝐻

= (
𝜕𝐻

𝜕𝑝
)

𝑇

𝑑𝑝

𝑑𝑝
|

𝐻

+ (
𝜕𝐻

𝜕𝑇
)

𝑝

𝑑𝑇

𝑑𝑝
|

𝐻

 

 

Noting that 
𝑑𝐻

𝑑𝑝
|

𝐻
= 0 , 

𝑑𝑝

𝑑𝑝
|

𝐻
= 1, and 

𝑑𝑇

𝑑𝑝
|

𝐻
= (

𝜕𝑇

𝜕𝑝
)

𝐻
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0 = (
𝜕𝐻

𝜕𝑝
)

𝑇

+ (
𝜕𝐻

𝜕𝑇
)

𝑝
(

𝜕𝑇

𝜕𝑝
)

𝐻

 

 

We can then use the following substitutions: 

 

(
𝜕𝐻

𝜕𝑝
)

𝑇

= 𝑉(1 − 𝑇𝛼) 

(
𝜕𝐻

𝜕𝑇
)

𝑝
= 𝐶𝑝 

(
𝜕𝑇

𝜕𝑝
)

𝐻

= 𝜇𝐽𝑇 

 

To get 

 

0 = 𝑉(1 − 𝑇𝛼) + 𝐶𝑝𝜇𝐽𝑇 

 

And solving for JT gives 

 

𝜇𝐽𝑇 =
𝑉

𝐶𝑝

(𝑇𝛼 − 1) 

 

 

 

Useful Definitions and Relationships 
 

 In this chapter (and in the previous chapter), several useful definitions have been stated. 

The following “measurable quantities” have been defined: 

 

𝐶𝑉 ≡ (
𝜕𝑈

𝜕𝑇
)

𝑉
  and  𝐶𝑝 ≡ (

𝜕𝐻

𝜕𝑇
)

𝑝
 

 

𝛼 ≡
1

𝑉
(

𝜕𝑉

𝜕𝑇
)

𝑝
  or  (

𝜕𝑉

𝜕𝑇
)

𝑝
= 𝑉𝛼 

 

𝜅𝑇 ≡ −
1

𝑉
(

𝜕𝑉

𝜕𝑝
)

𝑇
  or  (

𝜕𝑉

𝜕𝑝
)

𝑇
= −𝑉𝜅𝑇 

 

The following relation has been derived: 

 
𝛼

𝜅𝑇
= (

𝜕𝑝

𝜕𝑇
)

𝑉
 

 

And the following relationships were given without proof (yet!): 
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(
𝜕𝑈

𝜕𝑉
)

𝑇
= 𝑇 (

𝜕𝑝

𝜕𝑇
)

𝑉
− 𝑝  and  (

𝜕𝐻

𝜕𝑝
)

𝑇
= −𝑇 (

𝜕𝑉

𝜕𝑇
)

𝑝
+ 𝑉 

 

Together, these relationships and definitions make a powerful set of tools that can be used to 

derive a number of very useful expressions. 

 

Example: 

Derive an expression for (
𝜕𝐻

𝜕𝑉
)

𝑇
 in terms of measurable quantities. 

 

Solution 1: 

 

Begin by using H(p, T): 

 

𝑑𝐻 = (
𝜕𝐻

𝜕𝑝
)

𝑇

𝑑𝑝 + (
𝜕𝐻

𝜕𝑇
)

𝑝
𝑑𝑇 

 

Divide by dV and constrain to constant T (to generate the partial of interest on the left): 

 
𝑑𝐻

𝑑𝑉
|

𝑇
= (

𝜕𝐻

𝜕𝑝
)

𝑇

𝑑𝑝

𝑑𝑉
|

𝑇
+ (

𝜕𝐻

𝜕𝑇
)

𝑝

𝑑𝑇

𝑑𝑉
|

𝑇
 

 

The last term on the right will vanish (since dT = 0 for constant T). After converting to partial 

derivatives 

 

(
𝜕𝐻

𝜕𝑉
)

𝑇
= (

𝜕𝐻

𝜕𝑝
)

𝑇

(
𝜕𝑝

𝜕𝑉
)

𝑇
 

 

This result is simply a demonstration of the “chain rule” on partial derivatives! But now we are 

getting somewhere. We can now substitute for (
𝜕𝐻

𝜕𝑝
)

𝑇
using our “toolbox of useful relationships”: 

 

(
𝜕𝐻

𝜕𝑉
)

𝑇
= [−𝑇 (

𝜕𝑉

𝜕𝑇
)

𝑝
+ 𝑉] (

𝜕𝑝

𝜕𝑉
)

𝑇
 

 

Using the distributive property of multiplication, this expression becomes 

 

(
𝜕𝐻

𝜕𝑉
)

𝑇
= −𝑇 (

𝜕𝑉

𝜕𝑇
)

𝑝
(

𝜕𝑝

𝜕𝑉
)

𝑇
+ 𝑉 (

𝜕𝑝

𝜕𝑉
)

𝑇
 

 

Using the cyclic permutation rule (Transformation Type II), the middle term can be simplified 
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(
𝜕𝐻

𝜕𝑉
)

𝑇
= 𝑇 (

𝜕𝑝

𝜕𝑇
)

𝑉
+ 𝑉 (

𝜕𝑝

𝜕𝑉
)

𝑇
 

 

And now all of the partial derivatives on the right can be expressed in terms of a and kT (along 

with T and V, which are also “measurable properties”. 

 

(
𝜕𝐻

𝜕𝑉
)

𝑇
= 𝑇

𝛼

𝜅𝑇
+ 𝑉

1

−𝑉𝜅𝑇
 

 

or 

 

(
𝜕𝐻

𝜕𝑉
)

𝑇
=

1

𝜅𝑇

(𝑇𝛼 − 1) 

 

 

Example: 

Given  

 

(
𝜕𝐻

𝜕𝑉
)

𝑇
=

1

𝜅𝑇

(𝑇𝛼 − 1) 

 

Calculate H for the isothermal compression of ethanol which will decrease the molar volume 

by 0.010 L/mol at 300 K. (For ethanol,  = 1.1 x 10-3 K-1 and T = 7.9 x 10-5 atm-1). 

 

Δ𝐻 = (
𝜕𝐻

𝜕𝑉
)

𝑇
Δ𝑉 

 

 

Δ𝐻 = [
1

𝜅𝑇

(𝑇𝛼 − 1)] Δ𝑉 

 

Δ𝐻 = [
1

7.9 ⋅ 10−5𝑎𝑡𝑚−1
((300𝐾)(1.1 ⋅ 10−3𝐾−1) − 1)] (−0.0100 

𝐿

𝑚𝑜𝑙
) 

 

Δ𝐻 = 84.81
𝑎𝑡𝑚 𝐿

𝑚𝑜𝑙
⋅

8.314 𝐽

0.08206 𝑎𝑡𝑚 𝐿
= 8590 

𝐽

𝑚𝑜𝑙
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Learning Objectives 
 

After mastering the material covered in this chapter, one will be able to: 

 

1. Express the total differential of a thermodynamic function in terms of partial differentials 

involving two independent state variables: 

 

𝑑𝑈 = (
𝜕𝑈

𝜕𝑉
)

𝑇
𝑑𝑉 + (

𝜕𝑈

𝜕𝑇
)

𝑉
𝑑𝑇 

 

2. Utilize the Euler relation to define an exact differential. 

3. Derive and utilize partial differential transformation types I and II: 

 

(
𝜕𝑥

𝜕𝑦
)

𝑧

= − (
𝜕𝑥

𝜕𝑧
)

𝑦
(

𝜕𝑧

𝜕𝑦
)

𝑥

 

 

 And 

 

(
𝜕𝑥

𝜕𝑦
)

𝑧

=
1

(
𝜕𝑦
𝜕𝑥

)
𝑧

 

 

4. Define and describe the meaning of the isobaric thermal expansivity coefficient () and 

the isothermal compressibility coefficient (T). 

5. Derive expressions for  and T for gases based on an assumed equation of state. 

6. Define internal pressure and describe the experiment Joule used to attempt to measure 

it. 

7. Calculate a value for the internal pressure based on  and T for a given substance. 

8. Derive an expression for the internal pressure of a gas based on an assumed equation of 

state, given  

 

(
𝜕𝑈

𝜕𝑉
)

𝑇
= 𝑇

𝛼

𝜅𝑇
− 𝑝 

 

9. Demonstrate theat the internal pressure of an ideal gas is zero. 

10. Define and describe the physical meaning the Joule-Thomson coefficient. 
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11. Derive an expression for the Joule-Thomson coefficient in terms of , Cp, V, and T given 

 

(
𝜕𝐻

𝜕𝑝
)

𝑇

= 𝑉(1 − 𝑇𝛼) 

 

12. Demonstrate that the Joule-Thomson coefficient for an ideal gas is zero. 

13. Derive expressions for the temperature and pressure dependence of enthalpy and internal 

energy in terms of measurable properties. Use these expressions to calculate changes in 

enthalpy and internal energy for specific substances based on the values of those 

measurable properties when the temperature or pressure is changed. 

Problems 
 

 

1. Given the relationship 

 

(
𝜕𝑈

𝜕𝑉
)

𝑇
= 𝑇 (

𝜕𝑝

𝜕𝑇
)

𝑉
− 𝑝 

 

 show that  

 

(
𝜕𝑈

𝜕𝑉
)

𝑇
= 0 

 

 for an ideal gas. 

 

2. Determine if the following differential is exact, and if so, find the function z(x, y) that 

satisfies the expression. 

 

𝑑𝑧 = 4𝑥𝑦 𝑑𝑥 + 2𝑥2 𝑑𝑦 

 

3. For a van der Waals gas, (
𝜕𝑈

𝜕𝑉
)

𝑇
=

𝑎𝑛2

𝑉2 . Find an expression in terms of a, n, V, and R  for 

(
𝜕𝑇

𝜕𝑉
)

𝑈
 if the molar heat capacity is CV = 3/2 R. Use the expression to calculate the 

temperature change for 1.00 mol of Xe (a = 4.19 atm L2 mol -2) expanding at constant 

internal energy against a vacuum from 10.0 L to 20.0 L. 

 

4. Given the following data, calculate the change in volume for 50.0 cm3 of a) neon and b) 

copper due to an increase in pressure from 1.00 atm to 0.750 atm at 298 K. 

 

Substance T (at 1.00 atm and 298 K) 

Ne 1.00 atm-1 

Cu 0.735 x 10-6 atm-1 
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5. Consider a gas that follows the equation of state 

 

𝑝 =
𝑛𝑅𝑇

𝑉 − 𝑛𝑏
 

 

 derive an expression for  

a. the isobaric thermal expansivity,  

b. the Joule-Thomson coefficient, JT 

𝜇𝐽𝑇 =
𝑉

𝐶𝑝

(𝑇𝛼 − 1) 

 

6. Given 

 

(
𝜕𝐻

𝜕𝑝
)

𝑇

= −𝑇 (
𝜕𝑉

𝜕𝑇
)

𝑝
+ 𝑉 

 

derive an expression for (
𝜕𝑈

𝜕𝑝
)

𝑇
 in terms of measurable properties. Use your result to 

calculate the change in the internal energy of 18.0 g of water when the pressure is 

increased from 1.00 atm to 20.0 atm at 298 K. 

 

7. Derive an expression for (
𝜕𝑈

𝜕𝑇
)

𝑝
. Begin with the definition of enthalpy, in order to 

determine 

 

𝑑𝐻 = 𝑑𝑈 + 𝑝𝑑𝑉 + 𝑉𝑑𝑝 

 

Finish by dividing by dT and constraining to constant pressure. Make substitutions for the 

measurable quantities, and solve for (
𝜕𝑈

𝜕𝑇
)

𝑝
. 

 

8. Derive an expression for the difference between Cp and CV in terms of the internal 

pressure, , p and V. Using the definition for H as a starting point, show that 

 

(
𝜕𝐻

𝜕𝑇
)

𝑝
= (

𝜕𝑈

𝜕𝑇
)

𝑝
+ 𝑝 (

𝜕𝑉

𝜕𝑇
)

𝑝
 

 

Now, find an expression for (
𝜕𝑈

𝜕𝑇
)

𝑝
 by starting with U(V,T) and writing an expression for 

the total differential dU. 

 

𝑑𝑈 = (
𝜕𝑈

𝜕𝑉
)

𝑇
𝑑𝑉 + (

𝜕𝑈

𝜕𝑇
)

𝑉
𝑑𝑇 
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Divide by dp and constrain to constant T. Substitute this into the previous expressions 

and solve for (
𝜕𝐻

𝜕𝑇
)

𝑝
− (

𝜕𝑈

𝜕𝑇
)

𝑉
. 

 

9. Evaluate the expression you derived in problem 8 for an ideal, assuming that the internal 

pressure of an ideal gas is zero. 

 

10. A van der Waals gas follows the equation of state 

 

𝑝 =
𝑛𝑅𝑇

𝑉 − 𝑛𝑏
−

𝑎𝑛2

𝑉2
 

 

In this problem, we will derive the expression for the internal pressure of a van der Waals 

gas. 

 

a. Find an expression for T for a van der Waals gas. (
𝛼

𝜅𝑇
= (

𝜕𝑝

𝜕𝑇
)

𝑉
) 

b. Using the expression 

 

𝜋𝑇 = (
𝜕𝑈

𝜕𝑉
)

𝑇
= 𝑇

𝛼

𝜅𝑇
− 𝑝 

 

evaluate T. 

 

11. Using your result from problem 10, derive an expression for (
𝜕𝑇

𝜕𝑉
)

𝑈
 for a van der Waals 

gas. 
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