Chapter 7: Mixtures and Solutions

Up until this point, we have conserved single-component systems which do not change in
composition. By and large, nature consists of much more complicated systems, containing many
components and continually undergoing changes in composition through phase changes or
chemical reactions or both! In order to expand our thermodynamic toolbox, we will begin by
discussing mixtures.

Thermodynamics of mixing

A natural place to begin a discussion of mixtures is to consider a mixture of two gases.
Consider samples of the two gases filling two partitions in a single container, both at the same
pressure, temperature, having volumes Va and V.

B

After being allowed to mix isothermally, the partial pressures of the two gases will drop by a
factor of 2 (although the total pressure will still be the original value) and the volumes occupied
by the two gases will double.

A+B
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Enthalpy of Mixing

Assuming ideal behavior, so that interactions between individual gas molecules are
unimportant, it is fairly easy to calculate AH for each gas, as it is simply an isothermal
expansion. The total enthalpy of mixing is then given by

AHpiy = AH, + AHp
And since the enthalpy change for an isothermal expansion of an ideal gas is zero,
AHpi = 0
is a straight-forward conclusion. This will be the criterion for an ideal mixture.

In general, real mixtures will deviate from this limiting ideal behavior due to interactions
between molecules and other concerns. Also, many substances undergo chemical changes when
they mix with other substances. But for now, we will limit ourselves to discussing mixtures in
which no chemical reactions take place.

Entropy of Mixing

The entropy change induced due to isothermal mixing (assuming again no interactions
between the molecules in the gas mixture) is again going to be the sum of the contributions from
isothermal expansions of the two gases. Fortunately, entropy changes for isothermal expansions
are easy to calculate for ideal gases.

AS = nR1 (V2>
=n n Vl

If we use the initial volumes Va and Vg for the initial volumes of gases A and B, the total
volume after mixing is Va + Vg, and the total entropy change is

Vy+V V,+V,
ASml-xznARln( 4 2 B>+nBRln( 4 B)
B
Noting that the term (V*‘;—VB) is xi (where xa is the mole fraction of A after mixing), and that na
A A

can be expresses as the product of xa and the total number of moles, the expression can be
rewritten

ASiix = Nt R[—x4 In(x,) — xp In(xp)]

It should be noted that because the mole fraction is always between 0 and 1, that In(x;) is always
a negative number. As such, the entropy change for a system undergoing isothermal mixing is
always positive, as one might expect (since mixing will make the system less ordered.)
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Free Energy of Mixing

Calculating AGnmix should be no more difficult than calculating ASmix. For isothermal
mixing,, and constant total pressure

AGpix = AHpix— TASpix

and so it follows from above that for the isothermal mixing of two gases at constant total
pressure

AGmix = N0t RT [x4 In(x4) + xp In(xp)]

The relationships describing the isothermal mixing of two ideal gases A and B is summarized in
the graph below.
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Again, because In(x;) is always negative, AGmix is also always negative, implying that
mixing is always a spontaneous process. This is true for gases. But for many combinations of
liquids or solids, the strong intermolecular forces may make mixing unfavorable (for example in
the case of vegetable oil and water.) Also, these interactions may make the volume non-additive
as well (as in the case of ethanol and water.)

Partial Molar Volume

The partial molar volume of compound A in a mixture of A and B can be defined as

V= (0V>
47 \on,
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Using this definition, a change in volume for the mixture can be described using the total
differential of V:

= () amt (o) d
= \5 Ny E np
g/, rn,

or

dv = VAdnA + VBdTlB
And integration yields

npg

ny
V= f VAdnA + f VBdTlB
0 0
= VAnA + VBnB

This result is important as it demonstrates an important quality of partial molar quantities.
Specifically, if &; represents the partial molar property X for component i of a mixture, The total

property X for the mixture is given by
X= Z $iny
i

It should be noted that while the volume of a substance is never negative, the partial molar
volume can be. An example of this appears in the dissolution of a strong electrolyte in water.
Because the water molecules in the solvation sphere of the ions are physically closer together
than they are in bulk pure water, there is a volume decrease when the electrolyte dissolves. This
is easily observable at high concentrations where a larger fraction of the water in the sample is
tied up in solvation of the ions.

Chemical Potential

In much the same fashion as the partial molar volume is defined, the partial molar
Gibbs function is defined for compound i in a mixture:

B (66)
U = on

L p,Tn_j+i

This particular partial molar function is of particular importance, and is called the chemical
potential. The chemical potential tells how the Gibbs function will change as the composition of
the mixture changes. And since systems tend to seek a minimum aggregate Gibbs function, the
chemical potential will point to the direction the system can move in order to reduce the total
Gibbs function. In general, the total change in the Gibbs function (dG) can be calculated from
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w0-() ws () @3 (E) w

Tn; n; Tnjﬂ

Or, by substituting the definition for the chemical potential, and evaluating the pressure and
temperature derivatives as was done in chapter 6:

dG = Vdp - SdT + Z,uidni

But as it turns out, the chemical potential can be defined as the partial molar derivative any of the
four major thermodynamic functions U, H, A, or G:

dU = TdS- pdV + Zﬂid"i Hi = <g_7ll]i>s,v,nj¢i
dH = TdS+ VdT + Zmdni Hi= (S_Z)S’p’nﬁi
dA = —pdV - TdS + Z.uidni b= (g:lll)VTn]iL
dG = Vdp - SdT + Zﬂid"i o (3_2) I

The last definition, in which the chemical potential is defined as the partial molar Gibbs function
is the most commonly used, and perhaps the most useful. As the partial most Gibbs function, it is
easy to show that

du = Vdp — SdT

Where V is the molar volume, and S is the molar entropy. Using this expression, it is easy to

show that
0
(2 -y
dp/ ..
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And so at constant temperature

u p
f du = f Vdp
#O pO

So that for a substance for which the molar volume is fairly independent of pressure at constant
temperature (k7 is very small)
u P
f du = Vf dp
#0 pO

u—u’=Ve-p°)
Or
p=p"+Ve-p°

Where p° is a reference pressure (generally the standard pressure of 1 atm) and u° is the chemical
potential at the standard pressure. If the substance is highly compressible (such as a gas) the
pressure dependence of the molar volume is needed to complete the integral. If the substance is
an ideal gas

And so at constant temperature

n 2
j du=RTJ add
uo po P
Or

p
du = du® + RT In <F>

The Gibbs-Duhem equation

For a system at equilibrium, the Gibbs-Duhem equation must hold:

Z nidui =0

L

This relationship places a compositional constraint upon any changes in the chemical potential in
a mixture at constant temperature and pressure for a given composition.
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This result is easily derived when one considers that pi represents the partial molar Gibbs
function for component i. And as with other partial molar quantities,

Gror = Z niu;

l

Taking the derivative of both sides yields

dG = z Tlidﬂi + z ,uidni

But dG can also be expressed as
dG = Vdp - SdT + Z updn,
i
Setting these two expressions equal to one another

Znid,ui + Z‘Llidni = Vdp - 8dT + Zuidni
i i

2

And after canceling the }}; u;dn; term, one gets

2 nidy; = Vdp - SdT

l

For a system at constant temperature and pressure
Vdp — SdT = 0

This results in the Gibbs-Duhem equation,

z nid,ui =0

l

This expression relates how the chemical potential can change for a given composition while the
system maintains equilibrium. So for a binary system, consisting of components A and B (the
two most often studied compounds in all of chemistry)

du, = — A4
Ug = g Ua
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Fugacity

The relationship for chemical potential
p
u= 'uo + RTIn (E)

was derived assuming ideal gas behavior. But for real gases that deviate widely from ideal
behavior, the expression has only limited applicability. In order to use the simple expression on
real gases, a “fudge” factor is introduced called fugacity. Using fugacity instead of pressure, the
chemical potential expression becomes

u= u° +RT1n<fLO>

where f is the fugacity. Fugacity is related to pressure, but contains all of the deviations from
ideality within it. To see how it is related to pressure, consider that a change in chemical
potential for a single component system can be expressed as
du =Vdp — SdT

And so

0

(_ﬂ) v
op/ ..

Differentiating the expression for chemical potential above with respect to pressure at constant

volume results in
Gp), = Gl +rrm ()]}

which simplifies to

(g—g): RT la‘;;f) -

Multiplying both sides by p/RT gives

plaln(f) _w_,

op |, RT
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where Z is the compression factor as discussed in Chapter 2. Now, we can use the expression
above to obtain the fugacity coefficient y, as defined by

f=vp
Taking the natural logarithm of both sides yields
Inf=Iny+Inp
Or
Iny=Inf—Inp
Using some calculus and substitutions from above,

J&GH), o= ] (550, = [ G-5), @

T

Finally, integrating from O to p yields
| f” (Z — 1) p
ny = — ) ap
0 p T
If the gas behaves ideally, y = 1. In general, this will be the limiting value as p = 0 since all

gases behave ideal as the pressure approaches 0. The advantage to using the fugacity in this
manner is that it allows one to use the expression

u= u° +RT1n<fio>

to calculate the chemical potential, insuring that
G
dp

even for gases that deviate from ideal behavior!

=V

T

Colligative Properties

Colligative properties are important properties of solutions as they describe how the
properties of the solvent will change as solute (or solutes) is (are) added. Before discussing these
important properties, let us first review some definitions.
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Solution — a homogeneous mixture.
Solvent — The component of a solution with the largest mole fraction
Solute — Any component of a solution that is not the solvent.
Solutions can exist in solid (alloys of metals are an example of solid-phase solutions),

liquid, or gaseous (aerosols are examples of gas-phase solutions) forms. For the most part, this
discussion will focus on liquid-phase solutions.

Freezing Point Depression
In general (and as will be discussed in Chapter 8 in more detail) a liquid will freeze when
Usotia = Miiquid
As such, the freezing point of the solvent in a solution will be affected by anything that changes
the chemical potential of the solvent. As it turns out, the chemical potential of the solvent is
reduced by the presence of a solute.
In a mixture, the chemical potential of component A can be calculated by

Ua = U3+ RTInx,

And because xa is always less than (or equal to) 1, the chemical potential is always reduced by
the addition of another component.

The condition under which the solvent will freeze is
Ha,solia = Maliquid
where the chemical potential of the liquid is given by
Ua = U3+ RTInx,
Rearrangement yields

Ha — Ua

RT - In x,

In order to evaluate the temperature dependence of the chemical potential, it is useful to consider
the temperature derivative at constant pressure.

0 (ua— Uz _ (6 lnxA)
oT\ RT -\ aT /,
p
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(ua — pz) + i
RT? RT

(6uA) <6/,tz> B (0 lnxA)
aT /, aoT ) oT /,
Recalling that

u=H=TS

and

The previous equation becomes

(Hy—TS,— H2+TS9) 1 . (
- — o=+ 551 =

d1n xA>
or /,

And noting that in the case of the solvent freezing, Hf is the enthalpy of the pure solvent in solid
form, and Ha is the enthalpy of the solvent in the liquid solution. So

HP — Hy = AHps

The previous equation becomes

AHqu _SA+S/(1) +_SA+SX _ (alnXA)
RT? RT RT  \ aT /,

or

AHqu _ (6 lnXA)
RT2 ~\ oT /,

Separating the variables puts the equation into an integrable form.
T AH
fus _
JTO RT? dT = jdlnxA

where T° is the freezing point of the pure solvent and T is the temperature at which the solvent
will begin to solidify in the solution. After integration
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This can be simplified by noting that

1 1 T°-T AT

T To  TTe _ TTo

where AT is the difference between the freezing temperature of the pure solvent and that of the
solvent in the solution. Also, for small deviations from the pure freezing point, TT° can be
replaced by the approximate value (T°)?. So the expression becomes

B AHgyg
R(T°)2

AT =1nxy

Further, for dilute solutions, for which xa, the mole fraction of the solvent is very nearly 1,
values of Xa,

lnxA =~ —(1 - XA) = —Xp

where xg is the mole fraction of the solute. After a small bit of rearrangement, this results in an
expression for freezing point depression of

RTOZ
AT = X
(AHqu> ?

) can be replaced by Ky, which is the cryoscopic constant for the solvent.

RTOZ
AHfus

The factor (

AT = K;xg

AT gives the magnitude of the reduction of freezing point for the solution. Since AHzs and T° are
properties of the solvent, the freezing point depression property is independent of the solute and
is a property based solely on the nature of the solvent. Further, since xg was introduced as (1 -
Xa), it represents the sum of the mole fractions of all solutes present in the solution.

It is important to keep in mind that for a real solution, freezing of the solvent changes the
composition of the solution by decreasing the mole fraction of the solvent and increasing that of
the solute. As such, the magnitude of AT will change as the freezing process continually removes
solvent from the liquid phase of the solution.

Boiling Point Elevation

The derivation of an expression describing boiling point elevation is similar to that for
freezing point depression. In short, the introduction of a solute into a liquid solvent lowers the
chemical potential of the solvent, cause it to favor the liquid phase over the vapor phase. As sch,
the temperature must be increased to increase the chemical potential of the solvent in the liquid
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solution until it is equal to that of the vapor-phase solvent. The increase in the boiling point can
be expressed as

AT = Kbe

RTOZ
K, =
’ (AHUGP>
is called the ebullioscopic constant and, like the cryoscopic constant, is a property of the solvent
that is independent of the solute or solutes.

where

A very elegant derivation of the form of the models for freezing point depression and
boiling point elevation has been shared by F. E. Schubert (Schubert, 1983).

Cryoscopic and ebullioscopic constants are generally tabulated using molality as the unit
of solute concentration rather than mole fraction. In this form, the equation for calculating the
magnitude of the freezing point decrease or the boiling point increase is

where m is the concentration of the solute in moles per kg of solvent. Some values of Kr and Ky
are shown in the table below.

Substance K (°C kg mol?t) T% (°C) Kb (°C kg mol?) b (°C)
Water 1.86 0.0 0.51 100.0
Benzene 5.12 5.5 2.53 80.1
Ethanol 1.99 -114.6 1.22 78.4
CClq4 29.8 -22.3 5.02 76.8
Example:

The boiling point of a solution of 3.00 g of an unknown compound in 25.0 g of CCly raises the
boiling point to 81.5 °C. What is the molar mass of the compound?

Solution:
The approach here is to find the number of moles of solute in the solution. First, find the
concentration of the solution:

°Ck
(81.5°C—76.8°C) = <5.02 g) m
mol

mol
m = 0.936 —
kg
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Using the number of kg of solvent, one finds the number fo moles of solute:

mol
(0.936 E) (0.025 kg) = 0.0234 mol

The ratio of mass to moles yields the final answer:

300g g
0.0234 mol mol

Vapor Pressure Lowering

For much the same reason as the lowering of freezing points and the elevation of boiling
points for solvents into which a solute has been introduced, the vapor pressure of a volatile
solvent will be decreased due to the introduction of a solute. The magnitude of this decrease can
be quantified by examining the effect the solute has on the chemical potential of the solvent.

In order to establish equilibrium between the solvent in the solution and the solvent in the
vapor phase above the solution, the chemical potentials of the two phases must be equal.

.uvapor Usolvent

If the solute is not volatile, the vapor will be pure. And so (assuming ideal behavior)

!

p
Upap + RTlnp—o = u3 + RT Inxy,
Where p’ is the vapor pressure of the solvent over the solution. Similarly, for the pure solvent in
equilibrium with its vapor

Pa
pa = :ugap + RT IHF

where p° is the standard pressure of 1 atm, and pa is the vapor pressure of the pure solvent.
Substitution of the second expression into the first yields

!

p Pa
ﬂgap + RTlnp_o = (.ugap + RTIHF) + RT Inx,

The terms for m_vap”o cancel, leaving

Thermochemistry and Chemical Kinetics: Mixtures and Solutions © 2021 Patrick E. Fleming - Available under
Creative Commons Attribution-Noncommercial-Share Alike license 4.0 (CC BY-NC-SA 4.0)

170



https://creativecommons.org/licenses/by-nc-sa/4.0/

Chapter 7 — Mixtures and Solutions

RTlng—o = RTan—'g+RTlnxA

Subtracting RT In(P_A/P”0) from both side produces

P Pa
RTlnF—RTlnp—o = RT Inx,

which rearranges to

!

RTlnp—= RT Inx,

Pa

Dividing both sides by RT and exponentiating the result yields

or

P = XPa

This last result is Raoult’s Law. A more formal derivation would use the fugacities of the vapor
phases, but would look essentially the same. Also, as in the case of freezing point depression and
boiling point elevations, this derivation did not rely on the nature of the solute! However, unlike
freezing point depression and boiling point elevation, this derivation did not rely on the solute
being dilute, so the result should apply the entire range of concentrations of the solution.

Example:

Consider a mixture of two volatile liquids A and B. The vapor pressure of pure A is 150 Torr at
some temperature, and that of pure B is 300 Torr at the same temperature. What is the total vapor
pressure above a mixture of these compounds with the mole fraction of B of 0.600. What is the
mole fraction of B in the vapor that is in equilibrium with the liquid mixture?

Solution:
Using Raoult’s Law:

pa = (0.400)(150 Torr) = 60.0 Torr
pg = (0.600)(300 Torr) = 180 Torr

DPtot = Pa + g = 240 Torr

To get the mole fractions in the gas phase, one can use Dalton’s Law of partial pressures.
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_ pa _60.0Torr 0.250
i Dot 240 Torr
180 Torr
iy = = — 0.750

" Dior 240 Torr

And, of course, it is also useful to note that the sum of the mole fractions is 1 (as it must be!)

Osmotic Pressure
Osmosis is a process by which solvent can pass through a semi-permeable membrane (a
membrane through which solvent can pass, but not solute) from an area of low solute

concentration to a region of high solute concentration. The osmotic pressure is the pressure that
when exerted on the region of high solute concentration will halt the process of osmosis.

P

LA

i

1a®(p) uA(p+m)

The nature of osmosis and the magnitude of the osmotic pressure can be understood by
examining the chemical potential of a pure solvent and that of the solvent in a solution. The
chemical potential of the solvent in the solution (before any extra pressure is applied) is given by

Ua = U3+ RTInx,
And since xa < 1, the chemical potential is of the solvent in a solution is always lower than that
of the pure solvent. So, to prevent osmosis from occurring, something needs to be done to raise

the chemical potential of the solvent in the solution. This can be accomplished by applying
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pressure to the solution. Specifically, the process of osmosis will stop when the chemical
potential solvent in the solution is increased to the point of being equal to that of the pure
solvent. The criterion, therefore, for osmosis to cease is

pa(p) = pualxg,p +m)

To solve the problem to determine the magnitude of =, the pressure dependence of the chemical
potential is needed in addition to understanding the effect the solute has on lowering the
chemical potential of the solvent in the solution. The magnitude, therefore, of the increase in
chemical potential due to the application of excess pressure = must be equal to the magnitude of
the reduction of chemical potential by the reduced mole fraction of the solvent in the solution.
We already know that the chemical potential of the solvent in the solution is reduced by an
amount given by

pa — Ha = — RTInx,

And the increase in chemical potential due to the application of excess pressure is given by

plp +m) = u(p)+Ln<g—g) dp

T

The integrals on the right can be evaluated by recognizing
0
(Gr), =
dp/ .,
where V is the molar volume of the substance. Combining these expressions results in

p+m
—RTInx, = f Vdp
P

If the molar volume of the solvent is independent of pressure (has a very small value of kT —
which is the case for most liquids) the term on the right becomes.

p+m
j Vdp =V[plh'™" =vn
p

Also, for values of xa very close to 1
Inx, ~ —(1—x4) =—xp
So, for dilute solutions
xgRT =Vm
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Or after rearrangement

_ xgRT
v

T

again, where V is the molar volume of the solvent. And finally, since xs/V is the concentration of
the solute B for cases where ng << na. This allows one to write a simplified version of the
expression which can be used in the case of very dilute solutions

m = [B]RT
When a pressure exceeding the osmotic pressure = is applied to the solution, the chemical
potential of the solvent in the solution can be made to exceed that of the pure solvent on the other

side of the membrane, causing reverse osmosis to occur. This is a very effective method, for
example, for recovering pure water from a mixture such as a salt/water solution.

Solubility

The maximum solubility of a solute can be determined using the same methods we have
used to describe colligative properties. The chemical potential of the solute in a liquid solution
can be expressed

ug(solution) = ug(liquid) + RT Inxg
If this chemical potential is lower than that of a pure solid solute, the solute will dissolve into the
liquid solvent (in order to achieve a lower chemical potential!) So the point of saturation is
reached when the chemical potential of the solute in the solution is equal to that of the pure solid
solute.
ug(solid) = up(liquid) + RT In xg

Since the mole fraction at saturation is of interest, we can solve for In(xg).

| _ pp(solid) — pp(liquid)
nxg = RT

The difference in the chemical potentials is the molar Gibbs function for the phase change of
fusion. So this can be rewritten

—AG]?uS
RT

Inxg =
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It would be convenient if the solubility could be expressed in terms of the enthalpy of fusion for
the solute rather than the Gibbs function change. Fortunately, the Gibbs-Helmholtz equation
gives us a means of making this change. Noting that

o(F)\ _am
ar | — T?
14

Differentiation of the above expression for In(xg) with respect to T at constant p yields

(alan) B 1 AHpy
oT /, R T?

Separating the variables puts this into an integrable form that can be used to see how solubility
will vary with temperature:

Inxp 1 (T AHpyodT
fus

dlanz—f —Jus

'I:) R Tf T2

So if the enthalpy of fusion is constant over the temperature range of Tt to the temperature of
interest,

And xg will give the mole fraction of the solute in a saturated solution at the temperature T. The
value depends on both the enthalpy of fusion, and the normal melting point of the solute.

Activity

The bulk of the discussion in this chapter dealt with ideal solutions. However, real
solutions will deviate from this kind of behavior. So much as in the case of gases, where fugacity
was introduced to allow us to use the ideal models, activity is used to allow for the deviation of
real solutes from limiting ideal behavior. The activity of a solute is related to its concentration by

mpg
ap = V_mo

where v is the activity coefficient, mg is the molaliy of the solute, and m° is unit molality. The
activity coefficient is unitless in this definition, and so the activity itself is also unitless.
Furthermore, the activity coefficient approaches unity as the molality of the solute approaches
zero, insuring that dilute solutions behave ideally. The use of activity to describe the solute
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allows us to use the simple model for chemical potential by inserting the activity of a solute in
place of its mole fraction:

g = pug + RT Inag

The problem that then remains is the measurement of the activity coefficients themselves, which
may depend on temperature, pressure, and even concentration.

Activity Coefficients for Ionic Solutes
For an ionic substance that dissociates upon dissolving

MX(s) > M*(aq) + X~ (aq)

the chemical potential of the cation can be denoted . and that of the anion as u_. For a solution,
the total molar Gibbs function of the solutes is given by

G=pu,+pu_
where
u=p"+RTIna

where p* denotes the chemical potential of an ideal solution, and a is the activity of the solute.
Substituting his into the above relationship yields

G=uy+RThna, +u- +RTIna_
Using a molal definition for the activity coefficient
a; =yim;
The expression for the total molar Gibbs function of the solutes becomes
G=upy+RTlny,m, + puZ+RTIny_m_
This expression can be rearranged to yield
G=ui++u-+RTInm,m_+RTIny,y_
where all of the deviation from ideal behavior comes from the last term. Unfortunately, it

impossible to experimentally deconvolute the term into the specific contributions of the two ions.
So instead, we use a geometric average to define the mean activity coefficient, y-:.
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Y+ = \JV4Y-

For a substance that dissociates according o the general process

M, X, (s) X MY*(aq) +y X*"(aq)

the expression for the mean activity coefficient is given by

1
Y+ = (riy2)*ty

Debeye-Hiickel Law

In 1923, Debeye and Hiickel (Debye & Hiickel, 1923) suggested a means of calculating
the mean activity coefficients from experimental data. Briefly, they suggest that

1.824 - 10°
logyy = ——————|z,z_|[VI

(eT)2

where ¢ is he dielectric constant of the solvent, T is the temperature in K, z+ and z. are the
charges on the ions, and | is the ionic strength of the solution. 1 is given by

/= 1(myz2 + m_z?)
) mo

For a solution in water at 25 °C,

logyy = —0.509|z,z_|VI
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Learning Objectives
After mastering the material in this chapter, one will be able to

1. Describe the thermodynamics of mixing and calculate AH, AS, and AG or mixing for an
ideal solution.

2. Define chemical potential, and calculate its value as a function of pressure and
composition.

3. Derive expressions for the colligative properties and perform calculations using the
relationships.

4. Estimate the maximum solubility of a solute in a solvent based on the concept equality of

chemical potential at saturation.

Define fugacity and activity.

6. Calculate the mean activity coefficients of ions in solution based on the ionic strength of
the solution.

o

Problems

1. The compression factor (Z) for O, at 200 K is measured to have the following values:

1.000 0.9970
4.000 0.9880
7.000 0.9788
10.000 0.9700

Using numerical integration, calculate the fugacity constant for Oz at 200 K from these
data.

2. The normal boiling point of ethanol is 78.4 °C. Its enthalpy of vaporization is 38.6
kJ/mol. Estimate the vapor pressure of ethanol at 24.4 °C.
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3. When 20.0 grams of an unknown nonelectrolyte compound are dissolved in 500.0 grams
of benzene, the freezing point of the resulting solution is 3.77 °C. The freezing point of
pure benzene is 5.444 °C and the cryoscopic constant (K) for benzene is 5.12 °C/m.
What is the molar mass of the unknown compound?

4. Consider a mixture of two volatile liquids, A and B. The vapor pressure of pure liquid A
is 324.3 Torr and that of pure liquid B is 502.3 Torr. What is the total vapor pressure over
a mixture of the two liquids for which xg = 0.675?

5. Consider the following expression for osmotic pressure
nV = xgRT

where &t is the osmotic pressure, V is the molar volume of the solvent, xg is the mole
fraction of the solute, R is the gas law constant, and T is the temperature (in Kelvin).

The molar volume of a particular solvent is 0.0180 L/mol. 0.200 g of a solute (B) is
dissolved in 1.00 mol of the solvent. The osmotic pressure of the solvent is then
measured to be 0.640 atm at 298 K. Calculate the molar mass of the solute.

6. At 300 K, the vapor pressure of HCI(g) over a solution of HCI in GeCls are summarized
in the following table.

0.005 32.0
0.012 76.9
0.019 121.8

Calculate the Henry’s Law constant for HCI based on these data.

7. Consider the mixing of 1.00 mol of hexane (CsH12) with 1.00 mole of benzene (CeHe).
Calculate AH, AS, and AG of mixing, of the mixing occurs ideally at 298 K.
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