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Chapter 5: The Second Law 
 

 Rudolph Clausius is kind enough in his 1879 work “The Mechanical Theory of Heat” 

(Clausius, 1879) to indicate where we have been in our discussion of thermodynamics, as well as 

where we are going. 

 

“The fundamental laws of the universe which correspond to the 

two fundamental theorems of the mechanical theory of heat. 

1. The energy of the universe is constant. 

2. The entropy of the universe tends to a maximum.”  
― Rudolf Clausius, The Mechanical Theory Of Heat 

 

 The second law of thermodynamics, which introduces us to the topic of entropy, is 

amazing in how it constrains what we can experience and what we can do in the universe. As 

Sean M. Carroll, a CalTech Theoretical physicist, suggests in a 2010 interview with Wired 

Magazine (Biba, 2010),  

 

I’m trying to understand how time works. And that’s a huge 

question that has lots of different aspects to it. A lot of them go 

back to Einstein and spacetime and how we measure time using 

clocks. But the particular aspect of time that I’m interested in is 

the arrow of time: the fact that the past is different from the future. 

We remember the past but we don’t remember the future. There 

are irreversible processes. There are things that happen, like you 

turn an egg into an omelet, but you can’t turn an omelet into an 

egg. 

 

 We, as observers of nature, are time travelers. And the constraints on what we can 

observe as we move through time step from the second law of thermodynamics. But more than 

just understanding what the second law says, we are interested in what sorts of processes are 

possible. And even more to the point, what sorts of processes are spontaneous. 

 

 A spontaneous process is one that will occur without external forces pushing it. A process 

can be spontaneous even if it happens very slowly. Unfortunately, Thermodynamics is silent on 

the topic of how fast processes will occur, but is provides us with a powerful toolbox for 

predicting which processes will be spontaneous. But in order to make these predictions, a new 

thermodynamic law and variable is needed since the first law (which defined U and H) is 

insufficient. 

 

 Consider the following processes: 

 

NaOH(s) 
𝐻2𝑂
→   Na+(aq) + OH-(aq)   H < 0 

NaHCO3(s) 
𝐻2𝑂
→   Na+(aq) + HCO3

-(aq)  H > 0 
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Both reactions will occur spontaneously, but one is exothermic and the other endothermic.  So 

while it is intuitive to think that an exothermic process will be spontaneous, there is clearly more 

to the picture than simply the release of energy as heat when it comes to making a process 

spontaneous. The Carnot cycle (a theoretical cyclical heat engine)  is a useful thought construct 

which can guide an exploration of the answer the question of why a process is spontaneous. 

 

Heat Engines 
 

 Sadi Carnot (1796 – 1832) (Mendoza, 2016), a French physicist and engineer was very 

interested in the improvement of steam engines to perform the tasks needed by modern society.  

 

 
Figure 1. Sadi Carnot (1796 - 1832) 

 

In order to simplify his analysis of the inner workings of an engine, Carnot devised a useful 

construct for examining what affect engine efficiency. His construct is the heat engine. The idea 

behind a heat engine is that it will take energy in the form of heat, and transform it into an 

equivalent amount of work. 
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Unfortunately, such a device is impractical. As it turns out, nature prevents the complete 

conversion of energy into work with perfect efficiency. This leads to an important statement of 

the Second Law of Thermodynamics. 

 

It is impossible to convert heat into an equivalent amount of work 

without some other changes occurring in the universe. 

 

As such, a more reasonable picture of the heat engine is one which will allow for losses of 

energy to the surroundings. 

 

 
 

The fraction of energy supplied to the engine that can be converted to work defines the efficiency 

of the engine. 

 

The Carnot Cycle 
 

 The Carnot cycle is a theoretical cyclic heat engine that can used to examine what is 

possible for an engine for which the job is convert heat into work. For simplicity, all energy 

provided to the engine occurs isothermally (and reversibly) at a temperature Th and all of the 

energy lost to the surroundings also occurs isothermally and reversibly at temperature Tl. In order 

to insure this, the system must change between the two temperatures adiabatically.  

 

https://creativecommons.org/licenses/by-nc-sa/4.0/
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Thus, the cycle consists of four reversible legs, two of which are isothermal, and two of 

which are adiabatic. 

 

I. Isothermal expansion from p1 and V1 to p2 and V2  at Th. 

II. Adiabatic expansion from p2, V2, Th to p3, V3, Tl. 

III. Isothermal compression from p3 and V3 to p4 and V4 at Tl. 

IV. Adiabatic compression from p4, V4, Tl to p1, V1, Th. 

 

Plotted on a pressure-volume diagram, the Carnot cycle looks as follows: 
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Because this is a closed cycle (the ending state is identical initial state) any state function must 

have a net change of zero as the system moves around the cycle. Furthermore, the efficiency of 

the engine can be expressed by the net amount of work the engine produces per unit of heat 

supplied to power the engine. 

 

 

𝜖 =
𝑤𝑛𝑒𝑡
𝑞ℎ

 

 

In order to examine this expression, it is useful to write down expressions fo the heat and work 

flow in each of the four legs of the engine cycle. 

 

Leg Heat Work 

I qh = nRTh ln(V2/V1) -nRTh ln(V2/V1) 

II 0 CV(Tl – Th) 

III ql = nRTl ln(V4/V3) -nRTl ln(V4/V3) 

IV 0 CV(Th – Tl) 

 

The total amount of work done is given by the sum of terms in the thirst column. Clearly the 

terms for the two adiabatic legs cancel (as they have the same magnitude, but opposite signs.) So 

the total work done is given by 

 

𝑤𝑡𝑜𝑡 = −𝑛𝑅𝑇ℎln (
𝑉2
𝑉1
) − 𝑛𝑅𝑇𝑙ln (

𝑉4
𝑉3
) 

 

The efficiency of the engine can be defined as the total work produced per unit of energy 

provided by the high temperature reservoir. 

 

𝜀 =
|𝑤𝑡𝑜𝑡|

𝑞ℎ
 

 

or 

 

𝜀 =
𝑛𝑅𝑇ℎln (

𝑉2
𝑉1
) + 𝑛𝑅𝑇𝑙ln (

𝑉4
𝑉3
)

𝑛𝑅𝑇ℎln (
𝑉2
𝑉1
)

 

 

That expression has a lot of variables, but it turns out that it can be simplified dramatically. It 

turns out that by the choice of pathways connecting the states places a very important restriction 

on the relative values of V1, V2, V3 and V4. To understand this, we must consider how the work 

of adiabatic expansion is related to the initial and final temperatures and volumes. In Chapter 3, 

it was shown that the initial and final temperatures and volumes of an adiabatic expansion are 

related by 

https://creativecommons.org/licenses/by-nc-sa/4.0/
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𝑉𝑖𝑇𝑖

𝐶𝑉
𝑅 = 𝑉𝑓𝑇𝑓

𝐶𝑉
𝑅  

 

or 

 

𝑉𝑖
𝑉𝑓
= (
𝑇𝑓

𝑇𝑖
)

𝐶𝑉
𝑅

 

 

Using the adiabatic expansion and compression legs (II and IV), this requires that 

 

𝑉2

𝑉3
= (

𝑇𝑙

𝑇ℎ
)

𝐶𝑉
𝑅

  and   
𝑉1

𝑉4
= (

𝑇ℎ

𝑇𝑙
)

𝐶𝑉
𝑅  

 

Since the second terms are reciprocals of one another, the first terms must be as well! 

 
𝑉2
𝑉3
=
𝑉4
𝑉1

 

 

A simple rearrangement shows that 

 
𝑉2
𝑉1
=
𝑉3
𝑉4

 

 

This is very convenient! It is what allows for the simplification of the efficiency expression. 

 

𝜀 =
𝑛𝑅𝑇ℎln (

𝑉2
𝑉1
) + 𝑛𝑅𝑇𝑙ln (

𝑉4
𝑉3
)

𝑛𝑅𝑇ℎln (
𝑉2
𝑉1
)

 

 

becomes 

 

𝜀 =
𝑛𝑅𝑇ℎln (

𝑉2
𝑉1
) − 𝑛𝑅𝑇𝑙ln (

𝑉2
𝑉1
)

𝑛𝑅𝑇ℎln (
𝑉2
𝑉1
)

 

 

Canceling 𝑛𝑅 ln (
𝑉2

𝑉1
) in the numerator and denominator yields 

 

𝜀 =
𝑇ℎ − 𝑇𝑙
𝑇ℎ
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This expression gives the maximum efficiency and depends only on the high and low 

temperatures! 

 

 Also, it should be noted that the heat engine can be run backwards. By providing work to 

the engine, it can be forces to draw heat from the low temperature reservoir and dissipate it into 

the high temperature reservoir. This is how a refrigerator or heat pump works. The limiting 

efficiency of such a device can also be calculated using the temperatures of the hot can cold 

reservoirs.  

 

Example: 

What is the maximum efficiency of a freezer set to keep ice cream at a cool -10 oC, which it is 

operating in a room that is 25oC? What is the minimum amount of energy needed to remove 1.0 J 

from the freezer and dissipate it into the room? 

 

Solution: 

The efficiency for the refrigerator is given by 

 

𝜀 =
𝑇ℎ– 𝑇𝑙
𝑇𝑙

 

 

Converting the temperatures to an absolute scale, the efficiency can be calculated as 

 

𝜀 =
298 𝐾 –  263 𝐾

263 𝐾
= 0.1331 

 

This value ca be used in the following manner 

 

energytransferred = (workrequired) 

 

So 

 

1.0 J =  0.1331(w) 
 

or 

 

w = 7.5 J 

 

 

 It is interesting to note that any arbitrary closed cyclical process can be described as a 

sum of infinitesimally small Carnot cycles, and so all of the conclusions reached for the Carnot 

cycle apply to any cyclical process. 

Entropy 
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 In addition to learning that the efficiency of a Carnot engine depends only on the high 

and low temperatures, more interesting things can be derived through the exploration of this 

system. For example, consider the total heat transferred in the cycle: 

 

𝑞𝑡𝑜𝑡 =  𝑛𝑅𝑇ℎ ln (
𝑉2
𝑉1
) + 𝑛𝑅𝑇𝑙 ln (

𝑉4
𝑉3
) 

 

Making the substitution 

 
𝑉2
𝑉1
=
𝑉3
𝑉4

 

 

the total heat flow can be seen to be given by 

 

𝑞𝑡𝑜𝑡 = − 𝑛𝑅𝑇ℎ ln (
𝑉4
𝑉3
) + 𝑛𝑅𝑇𝑙 ln (

𝑉4
𝑉3
) 

 

It is clear that the two terms do not have the same magnitude, unless Th = Tl. This is sufficient to 

show that q is not a state function, since it’s net change around a closed cycle is not zero (as any 

value of a state function must be.) However, consider what happens when the sum of q/T is 

considered: 

 

∑
𝑞

𝑇
= 
−𝑛𝑅𝑇ℎ ln (

𝑉4
𝑉3
)

𝑇ℎ
+
𝑛𝑅𝑇𝑙 ln (

𝑉4
𝑉3
)

𝑇𝑙
 

 

= −𝑛𝑅 ln (
𝑉4
𝑉3
) + 𝑛𝑅 ln (

𝑉4
𝑉3
) 

 

= 0 

 

This is the behavior expected for a state function! It leads to the definition of entropy in 

differential form, 

 

𝑑𝑆 ≡
𝑑𝑞𝑟𝑒𝑣
𝑇

 

 

In general, dqrev will be larger than dq (since the reversible pathway defines the maximum heat 

flow.) So, it is easy to calculate entropy changes, as one needs only to define a reversible 

pathway that connects the initial and final states, and then integrate dq/T over that pathway. And 

since S is defined using q for a reversible pathway, S is independent of the actual path a 

system follows to undergo a change. 
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Calculating entropy changes 
 

 Entropy changes are fairly easy to calculate so long as one knows initial and final state. 

For example, if the initial and final volume are the same, the entropy can be calculated by 

assuming a reversible, isochoric pathway and determining an expression for 
𝑑𝑞

𝑇
. That term can 

then be integrated from the initial condition to the final conditions to determine the entropy 

change. 

 

Isothermal Changes 
 

 If the initial and final temperatures are the same, the most convenient reversible path to 

use to calculate the entropy is an isothermal pathway. As an example, consider the isothermal 

expansion of an ideal gas from V1 to V2. As was derived in Chapter 3, 

 

𝑑𝑞 =  𝑛𝑅𝑇
𝑑𝑉

𝑉
 

 

So dq/T is given by 

 
𝑑𝑞

𝑇
=  𝑛𝑅

𝑑𝑉

𝑉
 

 

and so 

 

Δ𝑆 = ∫
𝑑𝑞

𝑇
=  𝑛𝑅∫

𝑑𝑉

𝑉

𝑉2

𝑉1

= 𝑛𝑅 ln (
𝑉2
𝑉1
) 

 

Example: 

Calculate the entropy change for 1.00 mol of an ideal gas expanding isothermally from a volume 

of 24.4 L to 48.8 L. 

 

Solution: 

 

∆𝑆 =  𝑛𝑅 ln (
𝑉2
𝑉1
) 

 

∆𝑆 =  (1.00 𝑚𝑜𝑙) (8.314 
𝐽

𝑚𝑜𝑙 𝐾
) ln (

44.8 𝐿

22.4 𝐿
) 

 

∆𝑆 =  5.76 
𝐽

𝐾
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Isobaric Changes 
 

 For changes in which the initial and final pressures are the same, the most convenient 

pathway to use to calculate the entropy change is an isobaric pathway. In this case, it is useful to 

remember that  

 

𝑑𝑞 =  𝑛𝐶𝑝𝑑𝑇 

 

So 

 
𝑑𝑞

𝑇
= 𝑛𝐶𝑝

𝑑𝑇

𝑇
 

 

Integration from the initial to final temperature is used to calculate the change in entropy.  If the 

heat capacity is constant over the temperature range 

 

∫
𝑑𝑞

𝑇

𝑇2

𝑇1

= 𝑛𝐶𝑝∫
𝑑𝑇

𝑇

𝑇2

𝑇1

= 𝑛𝐶𝑝 ln (
𝑇2
𝑇1
) 

 

If the temperature dependence of the heat capacity is known, it can be incorporated into the 

integral. For example, if Cp can be expressed as 

 

𝐶𝑝 =  𝑎 +  𝑏𝑇 +
𝑐

𝑇2
 

 

S takes the form 

 

∫
𝑑𝑞

𝑇

𝑇2

𝑇1

= 𝑛∫ (
𝑎 + 𝑏𝑇 +

𝑐
𝑇2

𝑇
)

𝑇2

𝑇1

𝑑𝑇 

 

which simplifies to 

 

Δ𝑆 = 𝑛∫ (
𝑎

𝑇
+ 𝑏 +

𝑐

𝑇3
)

𝑇2

𝑇1

𝑑𝑇 

 

or 

 

Δ𝑆 = 𝑛 [𝑎 ln (
𝑇2
𝑇2
) + 𝑏(𝑇2 − 𝑇1) −

𝑐

3
(
1

𝑇2
4 −

1

𝑇1
4)] 

 

Isochoric Changes 
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 Similarly to the cast of constant pressure, it is fairly simple to calculate S. Since  

 

𝑑𝑞 =  𝑛𝐶𝑉𝑑𝑇 
 
𝑑𝑞

𝑇
 is given by 

 
𝑑𝑞

𝑇
 = 𝑛𝐶𝑉

𝑑𝑇

𝑇
 

 

And so for changes over which CV is independent of the temperature S is given by 

 

Δ𝑆 = 𝑛𝐶𝑉 ln (
𝑇2
𝑇1
) 

 

Adiabatic Changes 
 

 The easiest pathway for which to calculate entropy changes is an adiabatic pathway. 

Since dq = 0 for an adiabatic change, dS = 0 as well. But what if we forget this? Is there another 

way to show that the entropy change for an adiabatic expansion (for example) will be zero?  

 The answer, of course, is that because entropy is a state function, we can define a more 

convenient step-wise pathway, calculate the entropy change for each step, and show that they 

add to a total entropy change of zero. Since we know the relationship between the temperatures 

and volumes associated with an adiabatic expansion of an ideal gas 

 

𝑉1𝑇1

𝐶𝑉
𝑅 = 𝑉2𝑇2

𝐶𝑉
𝑅  

 

a very convenient step-wise pathway will be an isochoric temperature drop followed by an 

isothermal expansion. Graphically, this kind of a break down might look as follows: 
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 The entropy change for the isothermal expansion of an ideal gas from V1 to V2 is given 

by 

 

∆𝑆𝑇 = 𝑛𝑅 ln (
𝑉2
𝑉1
) 

 

And for an isochoric temperature drop, the entropy can be calculated from 

 

∆𝑆𝑉 = 𝑛𝐶𝑉 ln (
𝑇2
𝑇1
) 

 

It will be useful if both terms ST and SV can be expressed in terms of either the temperature 

change or the volume change. Using the relationship between volume and temperature derived 

earlier for an adiabatic expansion, it can easily be shown that 

 

𝑉2
𝑉1
= (
𝑇1
𝑇2
)

𝐶𝑉
𝑅

 

 

Substituting this into the expression for ST produces 

 

∆𝑆𝑇 = 𝑛𝑅 ln (
𝑇1
𝑇2
)

𝐶𝑉
𝑅
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= 𝑛𝑅 ln (
𝑇2
𝑇1
)
−
𝐶𝑉
𝑅

 

= −(𝑛𝑅) (
𝐶𝑉
𝑅
) ln (

𝑇2
𝑇1
) 

 

or  

 

∆𝑆𝑇 = −𝑛𝐶𝑉 ln (
𝑇2
𝑇1
) 

 

Finally adding the two together 

 

∆𝑆𝑡𝑜𝑡 = ∆𝑆𝑇 + ∆𝑆𝑉 

 

or  

 

∆𝑆𝑡𝑜𝑡 = −𝑛𝐶𝑉 ln (
𝑇2
𝑇1
) + 𝑛𝐶𝑉 ln (

𝑇2
𝑇1
) = 0 

 

which is exactly what we expected since dq = 0 must hold at all points  along the adiabatic 

expansion pathway, and 

 

∆𝑆 = ∫
𝑑𝑞

𝑇
 

Phase Changes 
 

 The entropy change for a phase change at constant pressure is given by 

 

∆𝑆 =
∆𝐻𝑝ℎ𝑎𝑠𝑒

𝑇
 

 

Example: 

The enthalpy of fusion for water is 6.01 kJ/mol. Calculate the entropy change for 1.0 mole of ice 

melting to form liquid at 273 K. 

 

Solution: 

∆𝑆 =
(1.0 𝑚𝑜𝑙) (6010

𝐽
𝑚𝑜𝑙

)

273 𝐾
 

 

∆𝑆 =  22
𝐽

𝐾
 

 

 

https://creativecommons.org/licenses/by-nc-sa/4.0/


Chapter 5 – The Second Law 

Thermochemistry and Chemical Kinetics: The Second Law © 2021 Patrick E. Fleming – Available under 
Creative Commons Attribution-Noncommercial-Share Alike license 4.0 (CC BY-NC-SA 4.0) 

112 

 

 

Comparing the System and the Surroundings 
 

 It is oftentimes important (for reasons that will be discussed in the next section) to 

calculate both the entropy change of the system as well as that of the surroundings. Depending 

on the size of the surroundings, they can provide or absorb as much heat as is needed for a 

process without changing temperature. As such, it is oftentimes a very good approximation to 

consider the changes to the surroundings as happening isothermally, even though it may not be 

the case for the system (which is generally smaller.) 

 

Example: 

Consider 18.02 g (1.00 mol) of ice melting at 273 K in a room that is 298 K. Calculate S for the 

ice, the surrounding room, and of the universe. (Hfus = 6.01 kJ/mol) 

 

Solution: 

For the process, qice = -qroom 

 

𝑞 =  𝑛∆𝐻𝑓𝑢𝑠 = (1.00 𝑚𝑜𝑙) (6010
𝐽

𝑚𝑜𝑙
) =  6010 𝐽 

 

For the ice: 

 

∆𝑆𝑖𝑐𝑒 =
𝑞𝑖𝑐𝑒
𝑇𝑖𝑐𝑒

=
6010 𝐽

273 𝐾
= 22.0 

𝐽

𝐾
 

 

For the room: 

 

∆𝑆𝑟𝑜𝑜𝑚 =
𝑞𝑟𝑜𝑜𝑚
𝑇𝑟𝑜𝑜𝑚

=
−6010 𝐽

298 𝐾
= −20. .2 

𝐽

𝐾
 

 

 

For the universe: 

 

∆𝑆𝑢𝑛𝑖𝑣 = ∆𝑆𝑖𝑐𝑒 + ∆𝑆𝑟𝑜𝑜𝑚 

 

∆𝑆𝑢𝑛𝑖𝑣 = 22.0 
𝐽

𝐾
− 20.2 

𝐽

𝐾
  

 

∆𝑆𝑢𝑛𝑖𝑣 = 1.8 
𝐽

𝐾
 

 

Note: Suniv is positive, which is characteristic of a spontaneous change! 

 

Example: 
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A 10.0 g piece of metal (C = 0.250 J/g oC) initially at 95 oC is placed in 25.0 g of water initially 

at 15 oC in an insulated container. Calculate the final temperature of the metal and water once the 

system has reached thermal equilibrium. Also, calculate the entropy change for the metal, the 

water, and the entire system. 

 

Solution: 

Heat will be transferred from the hot metal to the cold water. Since it has nowhere else to go, the 

final temperature can be calculated from the expression 

 

qw = -qm 

 

where qw is the heat absorbed by the water, and qm is the heat lost by the metal. And since  

 

q = mCT 

 

it follows that 

 

(25.0 𝑔) (4.184 
𝐽

𝑔 °𝐶
) (𝑇𝑓 − 15 ℃) = −(10.0 𝑔) (0.250 

𝐽

𝑔 °𝐶
) (𝑇𝑓 − 95 ℃) 

 

A bit of algebra determines the final temperature to be: 

 

Tf = 16.9 oC. 

 

To get the entropy changes, use the expression: 

 

Δ𝑆 = 𝑚𝐶 ln (
𝑇𝑓

𝑇𝑖
) 

 

So, for the water: 

 

Δ𝑆𝑤𝑎𝑡𝑒𝑟 = (25.0 𝑔) (4.184 
𝐽

𝑔 𝐾
)  ln (

289.9 𝐾

288 𝐾
) 

 

Δ𝑆𝑤𝑎𝑡𝑒𝑟 =  0.689
𝐽

𝐾
 

 

And for the metal: 

 

Δ𝑆𝑚𝑒𝑡𝑎𝑙 = (10.0 𝑔) (0.250 
𝐽

𝑔 𝐾
)  ln (

289.9 𝐾

368 𝐾
) 

 

Δ𝑆𝑚𝑒𝑡𝑎𝑙 = −0.596
𝐽

𝐾
 

 

For the system: 
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Δ𝑆𝑠𝑦𝑠 =  Δ𝑆𝑤𝑎𝑡𝑒𝑟 +  Δ𝑆𝑚𝑒𝑡𝑎𝑙 

 

Δ𝑆𝑠𝑦𝑠 =  0.689
𝐽

𝐾
− 0.596

𝐽

𝐾
 

 

Δ𝑆𝑠𝑦𝑠 = 0.093
𝐽

𝐾
 

 

Note: The total entropy change is positive, suggesting that this will be a spontaneous process. 

This should make some sense since one expects heat to flow from the hot metal to the cool water 

rather than the other way around. Also, note that the sign of the entropy change is positive for the 

part of the system that is absorbing the heat, and negative for the part losing the heat. 

 

 

 

 

 

 

 

 

 

 

 

In summary, S can be calculated for a number of pathways fairly conveniently. 

 

Pathway 𝚫𝑺𝒔𝒚𝒔 = ∫
𝒅𝒒𝒓𝒆𝒗
𝑻𝒔𝒚𝒔

 𝚫𝑺𝒔𝒖𝒓𝒓 = −
𝒒𝒔𝒚𝒔

𝑻𝒔𝒖𝒓𝒓
 

Adiabatic 0 

Δ𝑆𝑠𝑢𝑟𝑟 = −
𝑞𝑠𝑦𝑠

𝑇𝑠𝑢𝑟𝑟
 

Isothermal 
𝑞𝑟𝑒𝑣
𝑇

 𝑛𝑅 ln (
𝑉2

𝑉1
)* 

Isobaric 𝑛𝐶𝑝 ln (
𝑇2
𝑇1
) 

Isochoric 𝑛𝐶𝑉 ln (
𝑇2
𝑇1
) 

Phase Change 
∆𝐻𝑝ℎ𝑎𝑠𝑒

𝑇
 

*for an ideal gas 

 

And  

 

Suniv = Ssys + Ssurr. 
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This calculation is important as Suniv provides the criterion for spontaneity for which we were 

searching from the outset. This also suggests a new way to state the second law: 

 

The entropy of the universe increases in any spontaneous change. 

 

If we think of “the direction of spontaneous” to be the natural direction of chance, we can see 

that entropy and the second law are tied inexorably with the natural direction of the flow of time. 

Basically, we can expect the entropy of the universe to continue to increase as time flows into the 

future. We can overcome this natural tendency to greater entropy by doing work on a system. 

This is why it requires such great effort, for example, to straighten a messy desk, but little effort 

for the desk to get messy over time. 

 

 The Second Law can be summed up in a very simple mathematical expression called the 

Clausius Inequality. 

 

∆𝑆𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒 ≤ 0 

 

which must be true for any spontaneous process. It isn’t the most convenient criterion for 

spontaneity, but it will do for now. In the next chapter, we will derive a criterion which is more 

useful to us as chemists, who would rather focus on the system itself rather than both the system 

and its surroundings. Another statement of the Clausius theorem is 

 

∮
𝑑𝑞

𝑇
≤ 0 

 

with the only condition of the left hand side equaling zero is if the system transfers all heat 

reversibly. 

 

Entropy and Chaos 
 

 A common interpretation of entropy is that it is somehow 

a measure of chaos or randomness. There is some utility in that 

concept. Given that entropy is a measure of the dispersal of 

energy in a system, the more chaotic a system is, the greater the 

dispersal of energy will be, and thus the greater the entropy will 

be. 

 

 Ludwig Boltzmann (1844 – 1906) (O'Connor & 

Robertson, 1998) understood this concept well, and used it to 

derive a statistical approach to calculating entropy. Boltzmann 

proposed a method for calculating the entropy of a system based 

on the number of energetically equivalent ways a system can be 

constructed. 

 
Figure 2. Ludwig Boltzmann (1844 - 

1906) 
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Boltzmann proposed an expression, which in its modern form is: 

 

𝑆 = 𝑘𝐵 ln(W) 
 

This rather famous equation is etched on Botlzmann’s grave marker in commemoration of his 

profound contributions to the science of thermodynamics. 

 

 
 

 

 

Example: 

Calculate the entropy of a carbon monoxide crystal, containing 1.00 mol of CO, and assuming 

that the molecules are randomly oriented in one of two equivalent orientations. 

 

Solution: 

Using the Boltzmann formula 

 

𝑆 =  𝑁 𝑘𝐵 ln(𝑊) 
 

And using W = 2, the calculation is straightforward. 

 

𝑆 =  (1.00 𝑚𝑜𝑙 ∙
6.022 𝑥 1023

𝑚𝑜𝑙
) (1.38 𝑥 10−23

𝐽

𝐾
) ln(2) 

 

𝑆 =  5.76 
𝐽

𝐾
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The Third Law of Thermodynamics 
 

 One important consequence of Botlzmann’s proposal is that a perfectly ordered crystal 

(i.e. one that has only one energetic arrangement in its lowest energy state) will have an entropy 

of 0. This makes entropy qualitatively different than other thermodynamic functions. For 

example, in the case of enthalpy, it is impossible have a zero to the scale without setting an 

arbitrary reference (which is that the enthalpy of formation of elements in their standard states is 

zero.) But entropy has a natural zero! It is the state at which a system has perfect order. This also 

has another important consequence, in that it suggests that there must also be a zero to the 

temperature scale. These consequences are summed up in the Third Law of Thermodynamics. 

 

The entropy of a perfectly ordered crystal at 0 K is zero. 

 

This also suggests that absolute molar entropies can be calculated by 

 

𝑆 = ∫
𝐶

𝑇
𝑑𝑇

𝑇

0

 

 

where C is the heat capacity. An entropy value determined in this manner is called a Third Law 

Entropy. 

 

Naturally, the heat capacity will have some temperature dependence. It will also change 

abruptly if the substance undergoes a phase change. 

 

Unfortunately, it is exceedingly difficult to measure heat capacities very near zero K. 

Fortunately, many substances follow the Debye Extrapolation in that at very low temperatures, 

their heat capacities are proportional to T3. Using this assumption, we have a temperature 

dependence model that allows us to extrapolate absolute zero based on the heat capacity 

measured at as low a temperature as can be found. 

 

Example: 

SiO2 is found to have a molar heat capacity of 0.777 J mol-1 K-1 at 15 K (Yamashita, et al., 

2001). Calculate the molar entropy of SiO2 at 15 K. 

 

Solution: 

Using the Debye model, the heat capacity is given by 

 

𝐶𝑝 =  𝑎𝑇
3 

 

The value of a can be determined by 

 

0.777
𝐽

𝑚𝑜𝑙 𝐾
=  𝑎 (15 𝐾)3 
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𝑎 =  0.000230
𝐽

𝑚𝑜𝑙 𝐾4
 

 

The entropy is then calculated by 

 

𝑆 = ∫ (
𝑎𝑇3

𝑇
)𝑑𝑇

15 𝐾

0

 

 

𝑆 = 0.000230
𝐽

𝑚𝑜𝑙 𝐾4
∫ 𝑇2 𝑑𝑇
15 𝐾

0

 

 

𝑆 = 0.000230
𝐽

𝑚𝑜𝑙 𝐾4
[
𝑇3

3
]
0

15 𝐾

 

 

𝑆 =
0.000230

3

𝐽

𝑚𝑜𝑙 𝐾4
(15 𝐾)3 

 

𝑆 =  0.259
𝐽

𝑚𝑜𝑙 𝐾
 

 

 

Calculating a third Law Entropy 
 

 Start at 0 K, and go from there! 

Adiabatic Compressibility 
 

 In Chapter 4, we learned about the isothermal compressibility, T, which is defined as 

 

𝜅𝑇 = −
1

𝑉
(
𝜕𝑉

𝜕𝑝
)
𝑇

 

 

T is a very useful quantity, as it can be measured for many different substances and tabulated. 

Also, as we will see in the next chapter, it can be used to evaluate several different partial 

derivatives involving thermodynamic variables. 

 

 In his seminal work, Philosophiae Naturalis Principia Mathematica (Newton, 1723), 

Isaac Newton (1643 - 1727) (Doc) calculated the speed of sound through air, assuming that 

sound was carried by isothermal compression waves. His calculated value of 949 m/s was about 

15% smaller than experimental determinations. He accounted for the difference by pointing to 

“non-ideal effects”. But it turns out that his error, albeit an understandable one (since sound 

waves do not appear to change bulk air temperatures) was that the compression waves are 

adiabatic, rather than isothermal. As such, there are small temperature oscillations that occur due 
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to the adiabatic compression followed by expansion of the gas carrying the sound waves. The 

oversite was correct by Pierre-Simon Laplace (1749 – 1827) (O'Connor & Robertson, Pierre-

Simon Laplace, 1999). 

 

 LaPlace modeled the compression waves using the adiabatic compressibility, S defined 

by 

 

𝜅𝑆 = −
1

𝑉
(
𝜕𝑉

𝜕𝑝
)
𝑆

 

 

Since the entropy is defined by 

 

𝑑𝑆 =  
𝑑𝑞𝑟𝑒𝑣
𝑇

 

 

it follows that any adiabatic pathway (dq = 0) is also isentropic (dS = 0), or proceeds at constant 

entropy. 

 

 A couple of interesting conclusions can be reached by following the derivation of an 

expression for the speed of sound where the sound waves are modeled as adiabatic compression 

waves. We can begin by expanding the description of S by using Partial Derivative 

Transformation Type II. Applying this, the adiabatic compressibility can be expressed 

 

𝜅𝑆 =
1

𝑉
(
𝜕𝑉

𝜕𝑆
)
𝑝
(
𝜕𝑆

𝜕𝑝
)
𝑉

 

 

or by using transformation type I 

 

𝜅𝑆 =
1

𝑉

(
𝜕𝑆
𝜕𝑝
)
𝑉

(
𝜕𝑆
𝜕𝑉
)
𝑝

 

 

Using a simple chain rule, the partial derivatives can be expanded to get something a little easier 

to evaluate: 

 

𝜅𝑆 =
1

𝑉

(
𝜕𝑆
𝜕𝑇
)
𝑉
(
𝜕𝑇
𝜕𝑝
)
𝑉

(
𝜕𝑆
𝜕𝑇
)
𝑝
(
𝜕𝑇
𝜕𝑉
)
𝑝

 

 

The utility here is that  

 

(
𝜕𝑆

𝜕𝑇
)
𝑉
=
𝐶𝑉

𝑇
  and   (

𝜕𝑆

𝜕𝑇
)
𝑝
=
𝐶𝑝

𝑇
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This means that 

 

𝜅𝑆 =
𝐶𝑉
𝐶𝑝
(
1

𝑉

(
𝜕𝑇
𝜕𝑝
)
𝑉

(
𝜕𝑇
𝜕𝑉
)
𝑝

) 

 

Simplifying what is in the parenthesis yields 

 

𝜅𝑆 =
𝐶𝑉
𝐶𝑝
(
1

𝑉
(
𝜕𝑇

𝜕𝑝
)
𝑉

(
𝜕𝑉

𝜕𝑇
)
𝑝
) 

=
𝐶𝑉
𝐶𝑝
(−
1

𝑉
(
𝜕𝑉

𝜕𝑝
)
𝑇

) 

=
𝐶𝑉
𝐶𝑝
𝜅𝑇 

 

As will be shown in the next chapter, Cp is always bigger than CV, so S is always smaller than 

T. 

 

 But there is more! We can use this methodology to revisit how pressure affects volume 

along an adiabat. In order to do this, we would like to evaluate the partial derivative 

 

(
𝜕𝑉

𝜕𝑝
)
𝑆

= ? 

 

This can be expanded in the same way as above 

 

(
𝜕𝑉

𝜕𝑝
)
𝑆

= −

(
𝜕𝑉
𝜕𝑆
)
𝑝

(
𝜕𝑝
𝜕𝑆
)
𝑉

 

 

And further expand 

 

(
𝜕𝑉

𝜕𝑝
)
𝑆

= −

(
𝜕𝑉
𝜕𝑇
)
𝑝
(
𝜕𝑇
𝜕𝑆
)
𝑝

(
𝜕𝑝
𝜕𝑇
)
𝑉
(
𝜕𝑇
𝜕𝑆
)
𝑉

 

 

And as before, noting that (
𝜕𝑆

𝜕𝑇
)
𝑉
=
𝐶𝑉

𝑇
 and (

𝜕𝑆

𝜕𝑇
)
𝑝
=
𝐶𝑝

𝑇
, this can be simplified to 
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(
𝜕𝑉

𝜕𝑝
)
𝑆

= −
𝐶𝑉
𝐶𝑝
(
𝜕𝑉

𝜕𝑇
)
𝑝
(
𝜕𝑇

𝜕𝑝
)
𝑉

 

=
𝐶𝑉
𝐶𝑝
(
𝜕𝑉

𝜕𝑝
)
𝑇

 

 

Or defining  = Cp/CV, this can be easily rearranged to 

 

𝛾 (
𝜕𝑉

𝜕𝑝
)
𝑆

= (
𝜕𝑉

𝜕𝑝
)
𝑇

 

 

The right-hand derivative is easy to evaluate if we assume a specific equation of state. For an 

ideal gas, 

 

(
𝜕𝑉

𝜕𝑝
)
𝑇

= −
𝑛𝑅𝑇

𝑝2
= −

𝑉

𝑝
 

 

Substitution yields 

 

𝛾 (
𝜕𝑉

𝜕𝑝
)
𝑆

= −
𝑉

𝑝
 

 

which is now looking like a form that can be integrated.  Separation of variables yields 

 

𝛾
𝑑𝑉

𝑉
=
𝑑𝑝

𝑝
 

 

And integration (assuming that  is independent of volume) yields 

 

𝛾∫
𝑑𝑉

𝑉

𝑉2

𝑉1

= ∫
𝑑𝑝

𝑝

𝑝2

𝑝1

 

 

or 

 

𝛾 ln (
𝑉2
𝑉1
) = ln (

𝑝2
𝑃1
) 

 

which is easily manipulated to show that 

 

𝑝1𝑉1
𝛾
= 𝑝2𝑉2

𝛾
  or  pV = constant 

 

which is what we previously determined for the behavior of an ideal gas along an adiabat. 

 

 Finally, it should be noted that the correct expression for the speed of sound is given by 
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𝑣𝑠𝑜𝑢𝑛𝑑 = √
1

𝜌 𝜅𝑆
 

 

where  is the density of the medium. For an ideal gas, this expression becomes 

 

𝑣𝑠𝑜𝑢𝑛𝑑 = √
𝛾𝑅𝑇

𝑀
 

 

where M is the molar mass of the gas. Isaac Newton’s derivation, based on the idea that sound 

waves involved isothermal compressions, would produce a result which is missing the factor of 

, accounting for the systematic deviation from experiment which he observed. 
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Learning Objectives 
 

After mastering the material presented in this chapter, one will be able to: 

 

1. Describe a Carnot engine and derive a relationship for its efficiency of converting heat 

into work, in terms of the two temperatures at which the engine operates. 

2. Define entropy and be able to calculate entropy changes for systems (and the 

surroundings) undergoing changes which are definable as following various pathways, 

including constant temperature, constant pressure, constant volume, and adiabatic 

pathways.  

3. Relate entropy to disorder in a crystal based on the number of equivalent orientations a 

single formula unit may take within the crystal. 

4. State the Third Law of Thermodynamics, and use it to calculate total entropies for 

substances at a given temperature. 

5. Understand how isothermal compressibility differs from adiabatic compressibility and 

relate that difference to the measurement of the speed of sound waves traveling through a 

gas medium. 

Problems 
 

1. What is the minimum amount of work needed to remove 10.0 J of energy from a freezer 

at -10.0 oC, depositing the energy into a room that is 22.4 oC? 

 

2. Consider the isothermal, reversible expansion of 1.00 mol of a monatomic ideal gas (CV 

= 3/2 R)  from 10.0 L to 25.0 L at 298 K. Calculate q, w, U, H, and S for the 

expansion. 

 

3. Consider the isobaric, reversible expansion of 1.00 mol of a monatomic ideal gas (Cp = 

5/2 R) from 10.0 L to 25.0 L at 1.00 atm. Calculate q, w, U, H, and S for the 

expansion. 

 

4. Consider the isochoric, reversible temperature increase of 1.00 mol of a monatomic ideal 

gas (CV = 3/2 R) occupying 25.0 L from 298 K to 345 K. Calculate q, w, U, H, and S 

for the process. 
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5. Consider the adiabatic expansion of 1.00 mol of a monatomic ideal gas (CV = 3/2 R) from 

10.0 L at 273 K to a final volume of 45.0 L. Calculate T, q, w, U, H, and S for the 

expansion. 

 

6. 15.0 g of ice (Hfus = 6.009 kJ/mol) at 0 oC sits in a room that is at 21 oC. The ice melts 

to form liquid at 0 oC. Calculate the entropy change for the ice, the room, and the 

universe. Which has the largest magnitude? 

 

7. 15.0 g of liquid water (Cp = 75.38 J mol-1 oC-1) at 0 oC sits in a room that is at 21 oC. The 

liquid warms from 0 oC to 21 oC. Calculate the entropy change for the liquid, the room, 

and the universe. Which has the largest magnitude? 

 

8. Calculate the entropy change for taking 12.0 g of H2O from the solid phase (Cp = 36.9 J 

mol-1 K-1) at -12.0 oC to liquid (Cp = 75.2 J mol-1 K-1) at 13.0 oC. The enthalpy of fusion 

for water is Hfus = 6.009 kJ/mol. 

 

9. Using data found at 

http://chem.libretexts.org/Reference/Reference_Tables/Thermodynamics_Tables/T1%3A

_Standard_Thermodynamic_Quantities, calculate the standard reaction entropies (So) 

for the following reactions at 298 K. 

 

a. CH3CH2OH(l) + 3 O2(g) → 2 CO2(g) + 3 H2O(l)  

b. C12H22O11(s) + 12 O2 → 12 CO2(g) _ 11 H2O(l) 

c. 2 POCl3(l) → 2 PCl3(l) + O2(g) 

d. 2 KBr(s) + Cl2(g) → 2 KCl(s) + Br2(l) 

e. SiH4(g) + 2 Cl(g) → SiCl4(l) + 2 H2(g) 

 

10. 1.00 mole of an ideal gas is taken through a cyclic process involving three steps: 

 

I. Isothermal expansion from V1 to V2 at T1 

II. Isochoric heating from, T1 to T2 at V2 

III. Adiabatic compression from V2 to V1 

 

a. Graph the process on a V-T diagram. 

b. Find q, w, U, and S for each leg. (If you want, you can find H too!) 

c. Use the fact that S for the entire cycle must be zero (entropy being a state 

function and all …), determine the relationship between V1 and V2 in terms of Cv, 

T1 and T2. 

 

11. 2.00 moles of a monatomic ideal gas (CV = 3/2 R) initially exert a pressure of 1.00 atm at 

300.0 K. The gas undergoes the following three steps, all of which are reversible: I. 

isothermal compression to a final pressure of 2.00 atm, II. Isobaric temperature increase 

to a final temperature of 400.0 K, and III. A return to the initial state along a pathway in 

which  
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𝑝 = 𝑎 + 𝑏𝑇 

 

where a and b are constants. Sketch the cycle on a pressure-temperature plot, and 

calculate U and S for each of the legs. Are U and S zero for the sum of the three 

legs? 

 

12. A 10.0 g piece of iron (C = 0.443 J/g oC) initially at 97.6 oC is placed in 50.0 g of water 

(C = 4.184 J/g oC) initially at 22.3 oC in an insulated container. The system is then 

allowed to come to thermal equilibrium. Assuming no heat flow to or from the 

surroundings, calculate 

a. the final temperature of the metal and water 

b. the change in entropy for the metal 

c. the change in entropy for the water 

d. the change in entropy for the universe 

 

 

13. Considers a crystal of CHFClBr as having four energetically equivalent orientations for 

each molecule. What is the expected residual entropy at 0 K for 2.50 mol of the 

substance? 

 

14. A sample of a certain solid is measured to have a constant pressure heat capacity of 0.436 

J mol-1 K-1 at 10.0 K. Assuming the Debeye extrapolation model 

 

𝐶𝑝(𝑇) = 𝑎𝑇
3 

 

holds at low temperatures, calculate the molar entropy of the substance at 12.0 K. 
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