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Chapter 6: Putting the Second Law to Work 
 

 In the previous chapter, we saw that for a spontaneous process, Suniv > 0. While this is a 

useful criterion for determining whether or not a process is spontaneous, it is rather cumbersome, 

as it requires one to calculate not only the entropy change for the system, but also that of the 

surroundings. It would be much more convenient if there was a single criterion that would do the 

job and focus only on the system. As it turns out, there is! 

 

Free Energy Functions 
 

 Since we know that 

 

∆𝑆𝑢𝑛𝑖𝑣 ≥ 0 

 

for any natural process, and 

 

∆𝑆𝑢𝑛𝑖𝑣 = ∆𝑆𝑠𝑦𝑠 + ∆𝑆𝑠𝑢𝑟𝑟 

 

all we need to do is to find an expression for Ssurr that can be determined by the changes in the 

system itself. Fortunately, we have already done that! Recalling that at constant temperature 

 

∆𝑆 = −
𝑞𝑟𝑒𝑣
𝑇

 

 

and at constant pressure 

 

∆𝐻 = 𝑞𝑝 

 

it follows that at constant temperature and pressure 

 

∆𝑆𝑠𝑢𝑟𝑟 = −
∆𝐻𝑠𝑦𝑠

𝑇
 

 

Substitution into the above equations yields an expression for the criterion of spontaneity that 

depends only on variables describing the changes in the system! 

 

∆𝑆𝑢𝑛𝑖𝑣 ≥ ∆𝑆𝑠𝑦𝑠 − 
∆𝐻𝑠𝑦𝑠

𝑇
 

 

So 

 

∆𝑆𝑠𝑦𝑠 − 
∆𝐻𝑠𝑦𝑠

𝑇
 ≥ 0  
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Multiplying both sides by -T yields 

 

∆𝐻 − 𝑇∆𝑆 ≤ 0 

 

A similar derivation for constant volume processes results in the expression (at constant volume 

and temperature) 

 

∆𝑈 − 𝑇∆𝑆 ≤ 0 

 

The first expression is of grater use to chemists, as most of chemistry occurs at constant 

pressure. For geologists, however, who are interested in processes that occur at very high 

pressures (say, under the weight of an entire mountain) and expansion is not a possibility, the 

constant volume expression may be of greater interest. 

 

All of the above arguments can be made for systems in which the temperature is not 

constant by considering infinitesimal changes. The resulting expressions are 

 

𝑑𝐻 − 𝑇𝑑𝑆 ≤ 0  and   𝑑𝑈 − 𝑇𝑑𝑆 ≤ 0 

 

The Gibbs and Helmholtz Functions 
 

 The fist expression suggests a very convenient thermodynamic function to help keep 

track of both the effects of entropy and enthalpy changes. This function, the Gibbs function (or 

Gibbs Free Energy) is defined by 

 

𝐺 ≡ 𝐻 − 𝑇𝑆 

 

A change in the Gibbs function can be expressed 

 

∆𝐺 = ∆H − ∆(𝑇𝑆) 
 

Or at constant temperature 

 

∆𝐺 = ∆H −  T∆S 
 

And the criterion for a process to be spontaneous is the G < 0. As such, it should be clear 

spontaneity is not merely a function the enthalpy change (although exothermic processes tend to 

be spontaneous) but also a function of the entropy change, weighted by the temperature. Going 

back to an earlier example, 

 

𝑁𝑎𝑂𝐻(𝑠)  
𝐻2𝑂
→   𝑁𝑎+(𝑎𝑞) + 𝑂𝐻−(𝑎𝑞)  H < 0 

𝑁𝑎𝐻𝐶𝑂3(𝑠)  
𝐻2𝑂
→   𝑁𝑎+(𝑎𝑞) + 𝐻𝐶𝑂3

−(𝑎𝑞)  H > 0 
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It is easy to see why both processes are spontaneous. In the first case, the process is exothermic 

(favorable) and proceeds with an increase in entropy (also favorable) due to the formation of 

fragments in the liquid phase (more chaotic) from a very ordered solid (more ordered). The 

second reaction is endothermic (unfavorable) but proceeds with an increase in entropy 

(favorable). So, so long as the temperature is high enough, the entropy term will overwhelm the 

enthalpy term and cause the process to be spontaneous.  

 

 The conditions for spontaneous processes at constant temperature and pressure can be 

summarized in the following table. 

 

H S Spontaneous? 

> 0 > 0 At high T 

> 0 < 0 At no T 

< 0 > 0 At all T 

< 0 < 0 At low T 

 

Similarly to the Gibbs function, the Helmholtz function is defined by 

 

𝐴 ≡ 𝑈 − 𝑇𝑆 

 

and provides another important criterion for spontaneous processes at constant value and 

temperature. At constant temperature, the Helmholtz function can be expressed by 

 

∆𝐴 =  ∆𝑈 − 𝑇∆𝑆 

 

Based on similar arguments used for the Gibbs function, the Helmholtz function also can be used 

to predict which processes will be spontaneous at constant volume and temperature according to 

the following table. 

 

U S Spontaneous? 

> 0 > 0 At high T 

> 0 < 0 At no T 

< 0 > 0 At all T 

< 0 < 0 At low T 

 

Calculating G for Reactions 
 

 Much like in the case of enthalpy (and unlike entropy), free energy functions do not have 

an unambiguous zero to the energy scale. So, just like in the case of enthalpies of formation, by 

convention, the standard free energy of formation (Gf
o) for elements in their standard states is 

defined as zero.  
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This allows for two important things to happen. First, Gf
o can be measured and 

tabulated for any substance (in principle, at least.) Gf
o is determined to be Grxn

o for the 

reaction that forms one mole of a compound from elements in their standard states (similarly to 

how Hf
o is defined.) 

 

Secondly, tabulated Gf
o can be used to calculate standard reaction free energies (Grxn

o) 

in much the same way as HF
o is used for reaction enthalpies. 

 

Example 6.1: 

Given the following data at 298 K, calculate Go at 298 K for the following reaction: 

 

C2H4(g) + H2(g) → C2H6(g) 

 

Substance Gf
o (kJ/mol) 

C2H4(g) 68.4 

C2H6(g) -32.0 

 

Solution: 

The Gf
o values can be used to calculate Go for the reaction in exactly the same method as Hf

o 

can be used to calculate a reaction enthalpy. 

 

Go = (1 mol)(-32.0 kJ/mol) - (1 mol)(68.4 kJ/mol) 

 

Go = 100.4 kJ 

 

Note: H2(g) is not included in the calculation since Gf
o for H2(g) is 0 since it is an element in its 

standard state. 

 

 

Combining the First and Second Laws 
 

Modeling the dependence of the Gibbs and Helmholtz functions behave with varying 

temperature, pressure, and volume is fundamentally useful. But in order to do that, a little bit 

more development is necessary. 

 

To see the power and utility of these functions, it is useful to combine the First and 

Second Laws into a single mathematical statement. In order to do that, one notes that since 

 

𝑑𝑆 =
𝑑𝑞

𝑇
 

 

for a reversible change, it follows that 
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𝑑𝑞 =  𝑇𝑑𝑆 

 

And since  

 

𝑑𝑤 =  −𝑝𝑑𝑉 

 

for a reversible expansion in which only p-V works is done, it also follows that (since 𝑑𝑈 =
 𝑑𝑞 +  𝑑𝑤)  

 

𝑑𝑈 =  𝑇𝑑𝑆 −  𝑝𝑑𝑉 
 

This is an extraordinarily powerful result. This differential for dU can be used to simplify the 

differentials for H, A, and G. But even more useful are the constraints it places on the variables 

T, S, p, and V due to the mathematics of exact differentials! 

 

Maxwell Relations 
 

The above result suggests that the natural variables of internal energy are S and V (or the 

function can be considered as U(S, V)). So the total differential (dU) can be expressed: 

 

𝑑𝑈 = (
𝜕𝑈

𝜕𝑆
)
𝑉
𝑑𝑆 + (

𝜕𝑈

𝜕𝑉
)
𝑆
𝑑𝑉 

 

Also, by inspection (comparing the two expressions for dU) it is apparent that 

 

(
𝜕𝑈

𝜕𝑆
)
𝑉
=  𝑇  and  (

𝜕𝑈

𝜕𝑉
)
𝑆
= −𝑝 

 

But the value doesn’t stop there! Since dU is an exact differential, the Euler relation must hold 

that 

 

[
𝜕

𝜕𝑉
(
𝜕𝑈

𝜕𝑆
)
𝑉
]
𝑆

= [
𝜕

𝜕𝑆
(
𝜕𝑈

𝜕𝑉
)
𝑆
]
𝑉

 

 

By substituting the previous statements for (
𝜕𝑈

𝜕𝑆
)
𝑉

 and (
𝜕𝑈

𝜕𝑉
)
𝑆
, we see that 

 

[
𝜕

𝜕𝑉
(𝑇)]

𝑆
= [

𝜕

𝜕𝑆
(−𝑝)]

𝑉
 

 

or 

 

(
𝜕𝑇

𝜕𝑉
)
𝑆
= −(

𝜕𝑝

𝜕𝑆
)
𝑉
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This is an example of a Maxwell Relation. These are very powerful relationship that allows one 

to substitute partial derivatives when one is more convenient (perhaps it can be expressed 

entirely in terms of  and/or T for example.) 

 

 A similar result can be derived based on the definition of H. 

 

𝐻 ≡  𝑈 +  𝑝𝑉 
 

Differentiating (and using the chain rule on d(pV) yields 

 

𝑑𝐻 =  𝑑𝑈 +  𝑝𝑑𝑉 +  𝑉𝑑𝑝 

 

Making the substitution using the combined first and second laws (dU = TdS – pdV) for a 

reversible change involving on expansion (p-V) work 

 

𝑑𝐻 =  𝑇𝑑𝑆 –  𝑝𝑑𝑉 +  𝑝𝑑𝑉 +  𝑉𝑑𝑝 

 

This expression can be simplified by canceling the pdV terms. 

 

𝑑𝐻 =  𝑇𝑑𝑆 +  𝑉𝑑𝑝 

 

And much as in the case of internal energy, this suggests that the natural variables of H are S and 

p. Or 

 

𝑑𝐻 = (
𝜕𝐻

𝜕𝑆
)
𝑝
𝑑𝑆 + (

𝜕𝐻

𝜕𝑝
)
𝑆

𝑑𝑝 

 

where 

 

(
𝜕𝐻

𝜕𝑆
)
𝑝
=  𝑇  and  (

𝜕𝐻

𝜕𝑝
)
𝑆
=  𝑉 

 

It is worth noting at this point that since (
𝜕𝑈

𝜕𝑆
)
𝑉
= 𝑇 and (

𝜕𝐻

𝜕𝑆
)
𝑝
=  𝑇 that 

 

(
𝜕𝑈

𝜕𝑆
)
𝑉
= (

𝜕𝐻

𝜕𝑆
)
𝑝
 

 

But also, since the Euler Relation must also hold 

 

[
𝜕

𝜕𝑝
(
𝜕𝐻

𝜕𝑆
)
𝑝
]
𝑆

= [
𝜕

𝜕𝑆
(
𝜕𝐻

𝜕𝑝
)
𝑆

]
𝑝
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So 

 

(
𝜕𝑇

𝜕𝑝
)
𝑆

= (
𝜕𝑉

𝜕𝑆
)
𝑝
 

 

This is the Maxwell relation on H. Maxwell relations can also be developed based on A and G. 

The results of those derivations are summarized in the table below. 

 

Function Differential Natural Variables Maxwell Relation 

U dU = TdS - pdV S, V (
𝜕𝑇

𝜕𝑉
)
𝑆
= − (

𝜕𝑝

𝜕𝑆
)
𝑉

 

H dH = TdS + Vdp S, p (
𝜕𝑇

𝜕𝑝
)
𝑆

= (
𝜕𝑉

𝜕𝑆
)
𝑝
 

A dA = -pdV - SdT V, T (
𝜕𝑝

𝜕𝑇
)
𝑉
= (

𝜕𝑆

𝜕𝑉
)
𝑇
 

G dG = Vdp - SdT p, T (
𝜕𝑉

𝜕𝑇
)
𝑝
= − (

𝜕𝑆

𝜕𝑝
)
𝑇

 

 

The Maxwell relations are extraordinarily useful in deriving the dependence of thermodynamic 

variables on the state variables of p, T, and V. 

 

Example 6.2: 

Show that 

 

(
𝜕𝑈

𝜕𝑉
)
𝑇
=  𝑇

𝛼

𝜅𝑇
−  𝑝 

 

Solution: 

Start with the combined first and second laws: 

 

𝑑𝑈 =  𝑇𝑑𝑆 –  𝑝𝑑𝑉 

 

Divide both sides by dV and constraint to constant T: 

 
𝑑𝑈

𝑑𝑉
|
𝑇
 =  𝑇

𝑑𝑆

𝑑𝑉
|
𝑇
 –  𝑝

𝑑𝑉

𝑑𝑉
|
𝑇

 

 

Noting that  

 
𝑑𝑈

𝑑𝑉
|
𝑇
= (

𝜕𝑈

𝜕𝑉
)
𝑇
, 
𝑑𝑆

𝑑𝑉
|
𝑇
= (

𝜕𝑆

𝜕𝑉
)
𝑇

, and 
𝑑𝑉

𝑑𝑉
|
𝑇
= 1 

 

The result is 

 

https://creativecommons.org/licenses/by-nc-sa/4.0/


Chapter 6 – Putting the Second Law to Work 

 

Thermochemistry and Chemical Kinetics: Putting the Second Law to Work © 2021 Patrick E. Fleming – 
Available under Creative Commons Attribution-Noncommercial-Share Alike license 4.0 (CC BY-NC-SA 4.0) 

134 

 

(
𝜕𝑈

𝜕𝑉
)
𝑇
=  𝑇 (

𝜕𝑆

𝜕𝑉
)
𝑇
−  𝑝 

 

Now, employ the Maxwell relation on A 

 

(
𝜕𝑝

𝜕𝑇
)
𝑉
= (

𝜕𝑆

𝜕𝑉
)
𝑇
 

 

to get 

 

(
𝜕𝑈

𝜕𝑉
)
𝑇
=  𝑇 (

𝜕𝑝

𝜕𝑇
)
𝑉
−  𝑝 

 

And since 

 

(
𝜕𝑝

𝜕𝑇
)
𝑉
=
𝛼

𝜅𝑇
 

 

 

It is apparent that 

 

(
𝜕𝑈

𝜕𝑉
)
𝑇
=  𝑇

𝛼

𝜅𝑇
−  𝑝 

 

Note: How cool is that? This result was given without proof in chapter 4, but can now be proven 

analytically using the Maxwell Relations! 

 

 

A, G and Maximum Work 
 

 The functions A and G are oftentimes referred to as free energy functions. The reason for 

this is that they are a measure of the maximum work (in the case of A) or non p-V work (in the 

case of G) that is available from a process. To show this, consider the total differentials. 

 

 First, consider the differential of A. 

 

𝑑𝐴 =  𝑑𝑈 –  𝑇𝑑𝑆 –  𝑆𝑑𝑇 

 

Substituting the combined first and second laws for dU, but expressing the work term as dw, 

yields 

 

𝑑𝐴 =  𝑇𝑑𝑆 − 𝑑𝑤 –  𝑇𝑑𝑆 –  𝑆𝑑𝑇 

 

And cancelling the TdS terms gives 
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𝑑𝐴 =  𝑑𝑤 –  𝑆𝑑𝑇 
 

or at constant temperature (dT = 0) 

 

𝑑𝐴 =  𝑑𝑤 
 

Since the only assumption made here was that the change is reversible (allowing for the 

substitution of TdS for dq), and dw for a reversible change is the maximum amount of work, it 

follows that dA gives the maximum work that can be produced from a process at constant 

temperature. 

 

 Similarly, a simple expression can be derived for dG. Starting from the total differential 

of G. 

 

𝑑𝐺 =  𝑑𝑈 +  𝑝𝑑𝑉 +  𝑉𝑑𝑝 –  𝑇𝑑𝑆 –  𝑆𝑑𝑇 

 

Using an expression for dU = dq + dw, where dq = TdS and dw is split into two terms, one 

(dwpV) describing the work of expansion and the other (dwe) describing any other type of work 

(electrical, stretching, etc.) 

 

𝑑𝑈 =  𝑇𝑑𝑆 +  𝑑𝑤𝑝𝑉 +  𝑑𝑤𝑒 

 

dG can be expressed as  

 

𝑑𝐺 =  𝑇𝑑𝑆 −  𝑝𝑑𝑉 +  𝑑𝑤_𝑒 +  𝑝𝑑𝑉 +  𝑉𝑑𝑝 –  𝑇𝑑𝑆 –  𝑆𝑑𝑇 
 

Cancelling the  TdS and pdV terms leaves 

 

𝑑𝐺 =  𝑑𝑤_𝑒 +  𝑉𝑑𝑝 –  𝑆𝑑𝑇 

 

So at constant temperature (dT = 0) and pressure (dp = 0),  

 

𝑑𝐺 =  𝑑𝑤𝑒 
 

This implies that dG gives the maximum amount of non p-V work that can be extracted from a 

process. 

 

This concept of dA and dG giving the maximum work (under the specified conditions) si 

where the term “free energy” comes from, as it is the energy that is free to do work in the 

surroundings. If a system is to be optimized to do work in the soundings (for example a steam 

engine that may do work by moving a locomotive) the functions A and G will be important to 

understand. It will, therefore, be useful to understand how these functions change with changing 

conditions, such as volume, temperature, and pressure. 
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Volume Dependence of A 
 

 If one needs to know how the Helmholtz function changes with changing volume at 

constant temperature, the following expression can be used: 

 

∆𝐴 = ∫ (
𝜕𝐴

𝜕𝑉
)
𝑇
𝑑𝑉

𝑉2

𝑉1

 

 

But how does one derive an expression for (
𝜕𝐴

𝜕𝑉
)
𝑇
? This is a fairly straight forward process that 

begins with the definition of A: 

 

𝐴 =  𝑈 –  𝑇𝑆 

 

Differentiating (and using the chain rule to evaluate d(TS) yields 

 

𝑑𝐴 =  𝑑𝑈 –  𝑇𝑑𝑆 –  𝑆𝑑𝑇 

 

Now, it is convenient to use the combined first and second laws 

 
𝑑𝑈 =  𝑇𝑑𝑆 –  𝑝𝑑𝑉 

 

which assumes 1) a reversible change and 2) only pV work is being done. Substituting this into 

the expression above yields 

 

𝑑𝐴 =  𝑇𝑑𝑆 –  𝑝𝑑𝑉 –  𝑇𝑑𝑆 –  𝑆𝑑𝑇 

 

Canceling the TdS terms gives the important result 

 

𝑑𝐴 =  −𝑝𝑑𝑉 –  𝑆𝑑𝑇 

 

The natural variables of A are therefore V and T! So the total differential of A is conveniently 

expressed as 

 

𝑑𝐴 =  (
𝜕𝐴

𝜕𝑉
)
𝑇
𝑑𝑉 + (

𝜕𝐴

𝜕𝑇
)
𝑉
𝑑𝑇 

 

And by inspection, it is clear that 

 

(
𝜕𝐴

𝜕𝑉
)
𝑇
= −𝑝 and (

𝜕𝐴

𝜕𝑇
)
𝑉
= −𝑆 

 

And so, one can evaluate  
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∆𝐴 = ∫ (
𝜕𝐴

𝜕𝑉
)
𝑇
𝑑𝑉

𝑉2

𝑉1

 

 

as 

 

∆𝐴 = −∫ 𝑝 𝑑𝑉
𝑉2

𝑉1

 

 

If the pressure is independent of the temperature, it can be pulled out of the integral. Otherwise, 

the temperature dependence of the pressure must be included. Fortunately, this is easy if the 

substance is an ideal gas (or if some other equation of state can be used, such as the van der 

Waals equation.) 

 

Example 6.3: 

Calculate A for the isothermal expansion of 1.00 mol of an ideal gas from 10.0 L to 25.0 L at 

298 K. 

 

Solution: 

For an ideal gas, 

 

𝑝 =
𝑛𝑅𝑇

𝑉
 

 

So  

 

(
𝜕𝐴

𝜕𝑉
)
𝑇
= −𝑝  

 

becomes  

 

(
𝜕𝐴

𝜕𝑉
)
𝑇
= −

𝑛𝑅𝑇

𝑉
 

 

And so  

 

∆𝐴 = ∫ (
𝜕𝐴

𝜕𝑉
)
𝑇
𝑑𝑉

𝑉2

𝑉1

 

 

becomes 

 

∆𝐴 = −𝑛𝑅𝑇∫
𝑑𝑉

𝑉
𝑑𝑇

𝑉2

𝑉1
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or 

 

Δ𝐴 =  −𝑛𝑅𝑇 ln (
𝑉2
𝑉1
) 

 

Substituting the values from the problem 

 

Δ𝐴 =  −(1.00 𝑚𝑜𝑙) (8.314 
𝐽

𝑚𝑜𝑙 𝐾
) (298 𝐾) ln (

25.0 𝐿

10.0 𝐿
) 

 

Δ𝐴 = −2270 𝐽 
 

 

 

 

But further, it is easy to show that the Maxwell relation that arises from the simplified expression 

for the total differential of A is 

 

(
𝜕𝑝

𝜕𝑇
)
𝑉
= (

𝜕𝑆

𝜕𝑉
)
𝑇

 

 

This particular Maxwell relation is exceedingly useful since one of the terms, namely(
𝜕𝑝

𝜕𝑇
)
𝑉

, 

depends only on p, V, and T. As such it can be expressed in terms of our old friends,  and T! 

 

(
𝜕𝑝

𝜕𝑇
)
𝑉
=
𝛼

𝜅𝑇
 

 

Pressure Dependence of G 
 

 The pressure and temperature dependence of G is also easy to describe. The best starting 

place is the definition of G. 

 

𝐺 =  𝑈 +  𝑝𝑉 –  𝑇𝑆 
 

Taking the differential yields 

 

𝑑𝐺 =  𝑑𝑈 +  𝑝𝑑𝑉 +  𝑉𝑑𝑝 –  𝑇𝑑𝑆 –  𝑆𝑑𝑇 

 

The differential can be simplified by substituting the combined first and second law statement for 

dU (consider a reversible process and p-V work only). 

 

dG = TdS – pdV + pdV + Vdp – TdS – SdT 
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Canceling the Tds and pdV terms leaves 

 

dG = Vdp – SdT 

 

This suggests that the natural variables of G are p and T. So the total differential dG can also be 

expressed  

 

𝑑𝐺 = (
𝜕𝐺

𝜕𝑝
)
𝑇

𝑑𝑝 + (
𝜕𝐺

𝜕𝑇
)
𝑝
𝑑𝑇 

 

And by inspection, it is clear that 

 

(
𝜕𝐺

𝜕𝑝
)
𝑇
= 𝑉 and (

𝜕𝐺

𝜕𝑇
)
𝑝
= −𝑆 

 

It is also clear that the Maxwell relation on G is given by 

 

(
𝜕𝑉

𝜕𝑇
)
𝑝
= −(

𝜕𝑆

𝜕𝑝
)
𝑇

 

 

which is an extraordinarily useful relationship, since one of the terms is expressible entirely in 

terms of measurable quantities! 

 

(
𝜕𝑉

𝜕𝑇
)
𝑝
= 𝑉𝛼 

 

 The pressure dependence of G is given by the pressure derivative at constant temperature  

 

(
𝜕𝐺

𝜕𝑝
)
𝑇

=  𝑉 

 

which is simply the molar volume. For a fairly incompressible substance (such as a liquid or a 

solid) the molar volume will be essentially constant over a modest pressure range. 

 

Example 6.4: 

The density of gold is 19.32 g/cm3. Calculate G for a 1.00 g sample of gold when the pressure 

on it is increased from 1.00 atm to 2.00 atm. 

 

Solution: 

The change in the Gibbs function due to an isothermal change in pressure  can be expressed as 

 

Δ𝐺 = ∫ (
𝜕𝐺

𝜕𝑝
)
𝑇

𝑑𝑝
𝑝2

𝑝1

 

 

https://creativecommons.org/licenses/by-nc-sa/4.0/


Chapter 6 – Putting the Second Law to Work 

 

Thermochemistry and Chemical Kinetics: Putting the Second Law to Work © 2021 Patrick E. Fleming – 
Available under Creative Commons Attribution-Noncommercial-Share Alike license 4.0 (CC BY-NC-SA 4.0) 

140 

 

And since (
𝜕𝐺

𝜕𝑝
)
𝑇

 = V, the molar volume 

 

Δ𝐺 = ∫ 𝑉 𝑑𝑝
𝑝2

𝑝1

 

 

Assuming that the molar volume is independent or pressure over the stated pressure range, G 

becomes 

 

Δ𝐺 =  𝑉(𝑝2– 𝑝1) 
 

So, the molar change in the Gibbs function can be calculated by substituting the relevant values. 

 

Δ𝐺 =  (
𝑐𝑚3

19.32 𝑔
∙
197.0 𝑔

𝑚𝑜𝑙
∙

𝐿

1000 𝑐𝑚3
) (2.00 𝑎𝑡𝑚 –  1.00 𝑎𝑡𝑚) ∙

8.314 𝐽

0.08206 𝑎𝑡𝑚 𝐿
 

=  1.033 𝐽 
 

 

 

Temperature Dependence of A and G 
 

 In differential form, the free energy functions can be expressed as 

 

𝑑𝐴 =  −𝑝𝑑𝑉 –  𝑆𝑑𝑇  and  𝑑𝐺 =  𝑉𝑑𝑝 –  𝑆𝑑𝑇 

 

So by inspection, it is easy to see that 

 

(
𝜕𝐴

𝜕𝑇
)
𝑉
= −𝑆  and  (

𝜕𝐺

𝜕𝑇
)
𝑝
= −𝑆 

 

And so, it should be fairly straightforward to determine how each changes with changing 

temperature: 

 

∆𝐴 =  ∫ (
𝜕𝐴

𝜕𝑇
)
𝑉
𝑑𝑇

𝑇2

𝑇1

= −∫ 𝑆 𝑑𝑇
𝑇2

𝑇1

 

∆𝐺 =  ∫ (
𝜕𝐺

𝜕𝑇
)
𝑝
𝑑𝑇

𝑇2

𝑇1

= −∫ 𝑆 𝑑𝑇
𝑇2

𝑇1

 

 

But the temperature dependence of the entropy needed to be known in order to evaluate the 

integral. A convenient work-around can be obtained starting from the definitions of the free 

energy functions. 

 

𝐴 =  𝑈 –  𝑇𝑆  and  𝐺 =  𝐻 –  𝑇𝑆 
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Dividing by T yields 

 
𝐴

𝑇
=
𝑈

𝑇
− 𝑆  and  

𝐺

𝑇
=
𝐻

𝑇
− 𝑆 

 

Now differentiating each expression with respect to T at constant V or p respectively yields 

 

(
𝜕(
𝐴

𝑇
)

𝜕𝑇
)
𝑉

= −
𝑈

𝑇2
  and  (

𝜕(
𝐺

𝑇
)

𝜕𝑇
)
𝑝

= −
𝐻

𝑇2
 

 

Or differentiating with respect to 1/T provides a simpler form that is mathematically equivalent: 

 

(
𝜕(𝐴/𝑇)

𝜕(1/𝑇)
)
𝑉
=  𝑈  and  (

𝜕(𝐺/𝑇)

𝜕(1/𝑇)
)
𝑝
=  𝐻 

 

Focusing on the second expression (since all of the arguments apply to the first as well), we see a 

system that can be integrated. Multiplying both sides by d(1/T) yields: 

 

𝑑 (
𝐺

𝑇
) =  𝐻 𝑑 (

1

𝑇
) 

 

Or for finite changes G and H: 

 

𝑑 (
∆𝐺

𝑇
) =  ∆𝐻 𝑑 (

1

𝑇
) 

 

And integration, assuming the enthalpy change is constant over the temperature interval yields 

 

∫ 𝑑 (
∆𝐺

𝑇
)

𝑇2

𝑇1

= ∆𝐻∫  𝑑 (
1

𝑇
)

𝑇2

𝑇1

 

 
∆𝐺𝑇2
𝑇2

−
∆𝐺𝑇1
𝑇1

= ∆𝐻 (
1

𝑇2
−
1

𝑇1
) 

 

This is the Gibbs-Helmholtz equation, and can be used to determine how G changes with 

changing temperature. The equivalent equation for the Helmholtz function is 

 
∆𝐴𝑇2
𝑇2

−
∆𝐴𝑇1
𝑇1

= ∆𝑈 (
1

𝑇2
−
1

𝑇1
) 

 

Example 6.5: 

Given the following data at 298 K, calculate G at 500 K for the following reaction: 
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CH4(g) + 2 O2(g) → CO2(g) + H2O(g) 

 

Compound Gf
o (kJ/mol) Hf

o (kJ.mol) 

CH4(g) -50.5 -74.6 

CO2(g) -394.4 -393.5 

H2O(g) -228.6 -241.8 

 

Solution: 

H and G298 K and can be calculated fairly easily. It will be assumed that DH is constant over 

the temperature range of 298 K – 500 K. 

 

H = (1 mol)(-393.5 kJ/mol) + (2 mol)(-241.8 kJ/mol) – (1 mol)(-74.5 kJ/mol) = -820.6 kJ 

 

G298 = (1 mol)(-394.4 kJ/mol) + (2 mol)(-228,6 kJ/mol) – (1 mol)(-50.5 kJ/mol) = -801.1 kJ 

 

So using 

 
∆𝐺𝑇2
𝑇2

−
∆𝐺𝑇1
𝑇1

= ∆𝐻 (
1

𝑇2
−
1

𝑇1
) 

 

With the data just calculated gives 

 
∆𝐺500
500 𝐾

−
−801.1 𝑘𝐽

298 𝐾
= (−820.6 𝑘𝐽) (

1

500 𝐾
−

1

298 𝐾
) 

 

 

∆𝐺500 = −787.9 𝑘𝐽 
 

Note: G became a little bit less negative at the higher temperature, which is to be expected for a 

reaction which is exothermic. An increase in temperature should tend to make the reaction less 

favorable to the formation of products, which is exactly what is seen in this case! 

 

 

 

When Two Variables Change at Once 
 

 So far, we have derived a number of expressions and developed methods for evaluating 

how thermodynamic variables change as one variable changes while holding the rest constant. 

But real systems are seldom this accommodating. For example, a piece of metal (such as a 

railroad rail) left in the sun will undergo both an increase in temperature and an expansion due to 

the absorption of energy from sunlight. So both T and V are changing at the same time! If the 

change in a thermodynamic variable (such as G) is needed, contributions from both changes are 

required to be taken into account. We’ve already seen how to express this in terms of a total 

differential. 
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𝑑𝐺 = (
𝜕𝐺

𝜕𝑉
)
𝑇
𝑑𝑉 + (

𝜕𝐺

𝜕𝑇
)
𝑉
𝑑𝑇 

 

 Fortunately, G (like the other thermodynamic functions U, H, S, and A) is kind enough to 

be a state variable. This means that we can consider the changes independently and then simply 

add the results. Another way to think of this is that the system may follow either of two pathways 

to get from the initial conditions to the final conditions: 

 

Pathway I: 

1. An isothermal expansion from V1 to V2 at T1 followed by 

2. An isochoric temperature increase from T1 to T2 at V2 

 

Pathway 2: 

1. An isochoric temperature increase from T1 to T2 at V1 followed by 

2. And isothermal expansion from V1 to V2 at T2 

 

And since G has the good sense to be a state variable, the pathway connecting the initial and 

final states is unimportant. We are free to choose any path that is convenient to calculate the 

change. 

 

Example 6.6: 

Calculate the entropy change for 1.00 mol of a monatomic ideal gas (CV = 3/2 R) expanding 

from 10.0 L at 273 K to 22.0 L at 297 K. 

 

Solution: 

If one considers entropy to be a function of temperature and volume, one can write the total 

differential of entropy as 

 

𝑑𝑆 =  (
𝜕𝑆

𝜕𝑇
)
𝑉
𝑑𝑇 + (

𝜕𝑆

𝜕𝑉
)
𝑇
𝑑𝑉 

 

and thus 

 

∆𝑆 = ∫  (
𝜕𝑆

𝜕𝑇
)
𝑉
𝑑𝑇

𝑇2

𝑇1

 +  ∫ (
𝜕𝑆

𝜕𝑉
)
𝑇
𝑑𝑉

𝑉2

𝑉1

 

 

The first term is the contribution due to an isochoric temperature change: 

 

∆𝑆𝑇1→𝑇2 = ∫  (
𝜕𝑆

𝜕𝑇
)
𝑉
𝑑𝑇

𝑇2

𝑇1

 

= ∫
𝑛 𝐶𝑉
𝑇
𝑑𝑇

𝑇2

𝑇1

 

https://creativecommons.org/licenses/by-nc-sa/4.0/


Chapter 6 – Putting the Second Law to Work 

 

Thermochemistry and Chemical Kinetics: Putting the Second Law to Work © 2021 Patrick E. Fleming – 
Available under Creative Commons Attribution-Noncommercial-Share Alike license 4.0 (CC BY-NC-SA 4.0) 

144 

 

= 𝑛 𝐶𝑉 ln (
𝑇2
𝑇1
) 

= (1.00 𝑚𝑜𝑙) (
3

2
 8.314 

𝐽

𝑚𝑜𝑙 𝐾
) ln (

297 𝐾

273 𝐾
) 

=  1.051
𝐽

𝐾
 

 

The second term is the contribution due to an isothermal expansion: 

 

∆𝑆𝑉1→𝑉2 = ∫ (
𝜕𝑆

𝜕𝑉
)
𝑇
𝑑𝑉

𝑉2

𝑉1

 

 

From the Maxwell relation on A 

 

(
𝜕𝑆

𝜕𝑉
)
𝑇
= (

𝜕𝑝

𝜕𝑇
)
𝑉

 

 

So 

 

∆𝑆𝑉1→𝑉2 = ∫ (
𝜕𝑝

𝜕𝑇
)
𝑉
𝑑𝑉

𝑉2

𝑉1

 

= ∫ (
𝑛𝑅

𝑉
) 𝑑𝑉

𝑉2

𝑉1

 

=  𝑛 𝑅 ln (
𝑉2
𝑉1
) 

= (1.00 𝑚𝑜𝑙) (8.314
𝐽

𝑚𝑜𝑙 𝐾
) ln (

22.0 𝐿

10.0 𝐿
) 

= 6.56
𝐽

𝐾
 

 

And the total entropy change is 

 

∆𝑆𝑡𝑜𝑡 = ∆𝑆𝑇1→𝑇2 + ∆𝑆𝑉1→𝑉2 

=  1.051
𝐽

𝐾
+  6.56

𝐽

𝐾
 

=  7.61
𝐽

𝐾
 

 

 

Deriving an expression for a partial derivative.  

Partial Derivative Transformation Type III 

 

Thermodynamics involves many variables. But for a single component sample of matter, only 

two state variables are needed to describe the system and fix all of the thermodynamic properties 
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of the system. As such, it is conceivable that two functions can be specified as functions of the 

same two variables. In general terms: 

 

z(x, y)  and   w(x, y) 

 

So an important question that can be answered is, “What happens to z if w is held constant but x 

is changed?” To explore this, consider the total differential of z: 

 

𝑑𝑧 =  (
𝜕𝑧

𝜕𝑥
)
𝑦
𝑑𝑥 + (

𝜕𝑧

𝜕𝑦
)
𝑥

𝑑𝑦 

 

But z can also be considered a function of x and w(x, y). This implies that the total differential 

can also be written as 

 

𝑑𝑧 =  (
𝜕𝑧

𝜕𝑥
)
𝑤
𝑑𝑥 + (

𝜕𝑧

𝜕𝑤
)
𝑥
𝑑𝑤 

 

And these two total differentials must be equal to one another! 

 

(
𝜕𝑧

𝜕𝑥
)
𝑦
𝑑𝑥 + (

𝜕𝑧

𝜕𝑦
)
𝑥

𝑑𝑦 =  (
𝜕𝑧

𝜕𝑥
)
𝑤
𝑑𝑥 + (

𝜕𝑧

𝜕𝑤
)
𝑥
𝑑𝑤 

 

If we constrain the system to a change in which w remains constant, the last term will vanish 

since dw = 0. 

 

(
𝜕𝑧

𝜕𝑥
)
𝑦
𝑑𝑥 + (

𝜕𝑧

𝜕𝑦
)
𝑥

𝑑𝑦 =  (
𝜕𝑧

𝜕𝑥
)
𝑤
𝑑𝑥 

 

But also, since w is a function x and y, the total differential for w can be written 

 

𝑑𝑤 = (
𝜕𝑤

𝜕𝑥
)
𝑦
𝑑𝑥 + (

𝜕𝑤

𝜕𝑦
)
𝑥

𝑑𝑦 

 

And it too must be zero for a process in which w is held constant. 

 

0 =  (
𝜕𝑤

𝜕𝑥
)
𝑦
𝑑𝑥 + (

𝜕𝑤

𝜕𝑦
)
𝑥

𝑑𝑦 

 

From this expression, it can be seen that 

 

𝑑𝑦 =  − (
𝜕𝑤

𝜕𝑥
)
𝑦
(
𝜕𝑦

𝜕𝑤
)
𝑥
𝑑𝑥 
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Substituting this into the previous expression, yields 

 

(
𝜕𝑧

𝜕𝑥
)
𝑦
𝑑𝑥 + (

𝜕𝑧

𝜕𝑦
)
𝑥

[− (
𝜕𝑤

𝜕𝑥
)
𝑦
(
𝜕𝑦

𝜕𝑤
)
𝑥
𝑑𝑥] =  (

𝜕𝑧

𝜕𝑥
)
𝑤
𝑑𝑥 

 

which simplifies to 

 

(
𝜕𝑧

𝜕𝑥
)
𝑦
𝑑𝑥 − (

𝜕𝑧

𝜕𝑤
)
𝑥
(
𝜕𝑤

𝜕𝑥
)
𝑦
𝑑𝑥 =  (

𝜕𝑧

𝜕𝑥
)
𝑤
𝑑𝑥 

 

So for dx ≠ 0, implies that 

 

(
𝜕𝑧

𝜕𝑥
)
𝑦
− (

𝜕𝑧

𝜕𝑤
)
𝑥
(
𝜕𝑤

𝜕𝑥
)
𝑦
= (

𝜕𝑧

𝜕𝑥
)
𝑤

 

 

or 

 

(
𝜕𝑧

𝜕𝑥
)
𝑦
= (

𝜕𝑧

𝜕𝑥
)
𝑤
+ (

𝜕𝑧

𝜕𝑤
)
𝑥
(
𝜕𝑤

𝜕𝑥
)
𝑦

 

 

As with partial derivative transformation types I and II, this result can be achieved in a formal, 

albeit less mathematically rigorous method.  

 

Consider z(x, w). This allows us to write the total differential for z: 

 

𝑑𝑧 =  (
𝜕𝑧

𝜕𝑥
)
𝑤
𝑑𝑥 + (

𝜕𝑧

𝜕𝑤
)
𝑥
𝑑𝑤 

 

Now, divide by dx and constrain to constant y. 

 
𝑑𝑧

𝑑𝑥
|
𝑦
= (

𝜕𝑧

𝜕𝑥
)
𝑤

𝑑𝑥

𝑑𝑥
|
𝑦
+ (

𝜕𝑧

𝜕𝑤
)
𝑥

𝑑𝑤

𝑑𝑥
|
𝑦

 

 

Noting that dx/dx = 1 and converting the other ratios to partial derivatives yields 

 

(
𝜕𝑧

𝜕𝑥
)
𝑦
= (
𝜕𝑧

𝜕𝑥
)
𝑤
+ (

𝜕𝑧

𝜕𝑤
)
𝑥
(
𝜕𝑤

𝜕𝑥
)
𝑦

 

 

which agrees with the previous result! Again, the method is not mathematically rigorous, but it 

works so long as w, x, y, and z are state functions, so that the total differentials dw, dx, dy, and 

dz are exact. 
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The difference between Cp and CV 

 

 Constant volume and constant pressure heat capacities are very important in the 

calculation of many changes. The ratio Cp/CV =  appears in many expressions as well (such as 

the relationship between pressure and volume along an adiabatic expansion.) It would be useful 

to derive an expression for the difference Cp – CV as well. As it turns out, this difference is 

expressible in terms of measureable physical properties of a substance, such as , t, p, V, and T. 

 

 In order to derive an expression, let’s start from the definitions. 

 

𝐶𝑝 ≡ (
𝜕𝐻

𝜕𝑇
)
𝑝
 and 𝐶𝑉 ≡ (

𝜕𝑈

𝜕𝑇
)
𝑉

 

 

The difference is thus 

 

(
𝜕𝐻

𝜕𝑇
)
𝑝
− (
𝜕𝑈

𝜕𝑇
)
𝑉

 

 

In order to evaluate this difference, consider the definition of enthalpy: 

 

𝐻 =  𝑈 +  𝑝𝑉 

 

Differentiating this yields 

 

𝑑𝐻 =  𝑑𝑈 +  𝑝𝑑𝑉 +  𝑉𝑑𝑝 
 

Dividing this expression by dT and constraining to constant p gives 

 
𝑑𝐻

𝑑𝑇
|
𝑝
=
𝑑𝑈

𝑑𝑇
|
𝑝
+ 𝑝

𝑑𝑉

𝑑𝑇
|
𝑝
+ 𝑉

𝑑𝑝

𝑑𝑇
|
𝑝
 

 

The last term is kind enough to vanish (since dp = 0 at constant pressure). After converting the 

remaining terms to partial derivatives:  

 

(
𝜕𝐻

𝜕𝑇
)
𝑝
= (

𝜕𝑈

𝜕𝑇
)
𝑝
+ 𝑝 (

𝜕𝑉

𝜕𝑇
)
𝑝
 

 

This expression is starting to show some of the players. For example,  

 

(
𝜕𝐻

𝜕𝑇
)
𝑝
= 𝐶𝑝   and   (

𝜕𝑉

𝜕𝑇
)
𝑝
= 𝑉𝛼 

 

So 
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𝐶𝑝 = (
𝜕𝑈

𝜕𝑇
)
𝑝
+ 𝑝𝑉𝛼 

 

 

But what is (
𝜕𝑈

𝜕𝑇
)
𝑝
? In order to evaluate it, first consider U(V, T). Then the total differential du 

can be expressed 

 

𝑑𝑈 = (
𝜕𝑈

𝜕𝑉
)
𝑇
𝑑𝑉 + (

𝜕𝑈

𝜕𝑇
)
𝑉
𝑑𝑇 

 

Dividing by dT and constraining to constant p will generate the partial derivative we wish to 

evaluate: 

 
𝑑𝑈

𝑑𝑇
|
𝑝
= (
𝜕𝑈

𝜕𝑉
)
𝑇

𝑑𝑉

𝑑𝑇
|
𝑝
+ (
𝜕𝑈

𝜕𝑇
)
𝑉

𝑑𝑇

𝑑𝑇
|
𝑝
 

 

The last term will become unity, so after converting to partial derivatives, we see that 
 

(
𝜕𝑈

𝜕𝑇
)
𝑝
= (
𝜕𝑈

𝜕𝑉
)
𝑇
(
𝜕𝑉

𝜕𝑇
)
𝑝
+ (
𝜕𝑈

𝜕𝑇
)
𝑉

 

 
(This, incidentally, is an example of partial derivative transformation type III.) Now we are 

getting somewhere! The last term, (
𝜕𝑈

𝜕𝑇
)
𝑉

, is CV. Also, (
𝜕𝑉

𝜕𝑇
)
𝑝

 = V. So the expression can be 

rewritten 
 

(
𝜕𝑈

𝜕𝑇
)
𝑝
= (
𝜕𝑈

𝜕𝑉
)
𝑇
𝑉𝛼 + 𝐶𝑉 

 

If we can find an expression for (
𝜕𝑈

𝜕𝑉
)
𝑇

 we are almost home free! Fortunately, that is an easy 

expression to derive. Begin with the combined expression of the first and second laws: 
 

𝑑𝑈 =  𝑇𝑑𝑆 –  𝑝𝑑𝑉 
 
Now, divide both sides by dV and constrain to constant T. 
 

𝑑𝑈

𝑑𝑉
|
𝑇
=  𝑇

𝑑𝑆

𝑑𝑉
|
𝑇
 –  𝑝

𝑑𝑉

𝑑𝑉
|
𝑇

 

 
The last term is unity, so after conversion to partial derivatives, we see 
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(
𝜕𝑈

𝜕𝑉
)
𝑇
= 𝑇 (

𝜕𝑆

𝜕𝑉
)
𝑇
− 𝑝 

 
A Maxwell relation (specifically the Maxwell relation on A) can be used to substitute for 

(
𝜕𝑆

𝜕𝑉
)
𝑇

. 

 

(
𝜕𝑆

𝜕𝑉
)
𝑇
= (
∂p

∂T
)
V

 

 

Substituting this into the expression for (
𝜕𝑈

𝜕𝑉
)
𝑇

 yields 

 

(
𝜕𝑈

𝜕𝑉
)
𝑇
= 𝑇 (

∂p

∂T
)
V
− 𝑝 

 

And since (
∂p

∂T
)
V
=

𝛼

𝜅𝑇
,  

 

(
𝜕𝑈

𝜕𝑉
)
𝑇
= 𝑇

𝛼

𝜅𝑇
− 𝑝 

 

Now, substituting this into the expression for (
𝜕𝑈

𝜕𝑇
)
𝑝

, we get 

 

(
𝜕𝑈

𝜕𝑇
)
𝑝
= [𝑇

𝛼

𝜅𝑇
− 𝑝]𝑉𝛼 + 𝐶𝑉 

=
𝑇𝑉𝛼2

𝜅𝑇
− 𝑝𝑉𝛼 + 𝐶𝑉 

 
This can now be substituted into the expression  
 

𝐶𝑝 = (
𝜕𝑈

𝜕𝑇
)
𝑝
+ 𝑝𝑉𝛼 

 
 
yields 
 

𝐶𝑝 = 
𝑇𝑉𝛼2

𝜅𝑇
− 𝑝𝑉𝛼 + 𝐶𝑉 + 𝑝𝑉𝛼 

 
The pV terms will cancel. And subtracting CV from both sides gives the desired result: 
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𝐶𝑝 − 𝐶𝑉  =  
𝑇𝑉𝛼2

𝜅𝑇
 

 
And this is a completely general result since the only assumptions made were those that 
allowed us to use the combined first and second laws in the form dU = TdS – pdV. That 
means that this expression can be applied to any substance whether gas, liquid, animal, 
vegetable, or mineral. But what is the result for an ideal gas? 
 
 Since we know that for an ideal gas 
 

𝛼 = 
1

𝑇
  and  𝜅𝑇 =

1

𝑝
 

 
Substitution yields 
 

𝐶𝑝 − 𝐶𝑉  =  
𝑇𝑉 (

1
𝑇)
2

(
1
𝑝)

 

=
𝑝𝑉

𝑇
 

=  𝑅 
 
So for an ideal gas, Cp – CV = R. That is good to know, no? 
 
Example 6.7: 

Derive the expression for the difference between Cp and CV by beginning with the definition of 

H, differentiating, dividing by dV (to generate the partial derivative definition of CV). In this 

approach, you will need to find expressions for (
𝜕𝐻

𝜕𝑇
)
𝑉

, and (
𝜕𝑈

𝜕𝑝
)
𝑇
, and also utilize the Maxwell-

Relation on G. 

 

Solution: 

 Begin with the definition of enthalpy. 

 

𝐻 = 𝑈 + 𝑝𝑉 

 

Differentiate the expression. 

 

𝑑𝐻 = 𝑑𝑈 + 𝑝𝑑𝑉 + 𝑉𝑑𝑝 

 

Now, divide by dV and constrain to constant T (as described in the instructions) to generate the 

partial derivative definition of CV. 
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𝑑𝐻

𝑑𝑇
|
𝑉
=
𝑑𝑈

𝑑𝑇
|
𝑉
+ 𝑝

𝑑𝑉

𝑑𝑇
|
𝑉
+ 𝑉

𝑑𝑝

𝑑𝑇
|
𝑉

 

 

(
𝜕𝐻

𝜕𝑇
)
𝑉
= (
𝜕𝑈

𝜕𝑇
)
𝑉
+ 𝑉 (

𝜕𝑝

𝜕𝑇
)
𝑉

 

 

Now what is needed is an expression for (
𝜕𝐻

𝜕𝑇
)
𝑉

. This can be derived from the total differential 

for H(p,T) by dividing by dT and constraining to constant V. 

 

𝑑𝐻 = (
𝜕𝐻

𝜕𝑝
)
𝑇

𝑑𝑝 + (
𝜕𝐻

𝜕𝑇
)
𝑝
𝑑𝑇 

 
𝑑𝐻

𝑑𝑇
|
𝑉
= (
𝜕𝐻

𝜕𝑝
)
𝑇

𝑑𝑝

𝑑𝑇
|
𝑉
+ (
𝜕𝐻

𝜕𝑇
)
𝑝

𝑑𝑇

𝑑𝑇
|
𝑉

 

 

(
𝜕𝐻

𝜕𝑇
)
𝑉
= (
𝜕𝐻

𝜕𝑝
)
𝑇

(
𝜕𝑝

𝜕𝑇
)
𝑉
+ (
𝜕𝐻

𝜕𝑇
)
𝑝
 

 

This again is an example of Partial Differential Transformation Type III. To continue, we 

need an expression for (
𝜕𝐻

𝜕𝑝
)
𝑇
. This can be quickly generated by considering the total differential 

of H(p,S), its natural variables: 

 

𝑑𝐻 = 𝑇𝑑𝑆 + 𝑉𝑑𝑝 

 

Dividing by dp and constraining to constant T yields 

 
𝑑𝐻

𝑑𝑝
|
𝑇

= 𝑇
𝑑𝑆

𝑑𝑝
|
𝑇

+ 𝑉
𝑑𝑝

𝑑𝑝
|
𝑇

 

 

(
𝜕𝐻

𝜕𝑝
)
𝑇

= 𝑇 (
𝜕𝑆

𝜕𝑝
)
𝑇

+ 𝑉 

 

Using the Maxwell Relation on G, we can substitute  

 

−(
𝜕𝑉

𝜕𝑇
)
𝑝
= (
𝜕𝑆

𝜕𝑝
)
𝑇

 

 

So 

 

(
𝜕𝐻

𝜕𝑝
)
𝑇

= −𝑇 (
𝜕𝑉

𝜕𝑇
)
𝑝
+ 𝑉 
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Now, substitute this back into the expression for (
𝜕𝐻

𝜕𝑇
)
𝑉

 

 

 

(
𝜕𝐻

𝜕𝑇
)
𝑉
= [−𝑇 (

𝜕𝑉

𝜕𝑇
)
𝑝
+ 𝑉] (

𝜕𝑝

𝜕𝑇
)
𝑉
+ (
𝜕𝐻

𝜕𝑇
)
𝑝
 

 

(
𝜕𝐻

𝜕𝑇
)
𝑉
= −𝑇 (

𝜕𝑉

𝜕𝑇
)
𝑝
(
𝜕𝑝

𝜕𝑇
)
𝑉
+ 𝑉 (

𝜕𝑝

𝜕𝑇
)
𝑉
+ (
𝜕𝐻

𝜕𝑇
)
𝑝
 

 

This can now substituted for the right-hand side of the initial expression for (
𝜕𝐻

𝜕𝑇
)
𝑉

: 

 

−𝑇 (
𝜕𝑉

𝜕𝑇
)
𝑝
(
𝜕𝑝

𝜕𝑇
)
𝑉
+ 𝑉 (

𝜕𝑝

𝜕𝑇
)
𝑉
+ (
𝜕𝐻

𝜕𝑇
)
𝑝
= (
𝜕𝑈

𝜕𝑇
)
𝑉
+ 𝑉 (

𝜕𝑝

𝜕𝑇
)
𝑉

 

 

The 𝑉 (
𝜕𝑝

𝜕𝑇
)
𝑉

 terms are kind enough to cancel one another. The expression can then be rearranged 

to yield 

 

(
𝜕𝐻

𝜕𝑇
)
𝑝
− (
𝜕𝑈

𝜕𝑇
)
𝑉
= 𝑇 (

𝜕𝑉

𝜕𝑇
)
𝑝
(
𝜕𝑝

𝜕𝑇
)
𝑉

 

 

Or 

 

𝐶𝑝 − 𝐶𝑉 =
𝑇𝑉𝛼2

𝜅𝑇
 

 

which might look familiar! 
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Learning Objectives 
 
After mastering the material presented in this chapter, one will be able to: 

 

1. Define the free energy functions A and G, and relate changes in these functions to 
the spontaneity of a given process and constant volume and pressure respectively. 

2. Use the definitions of entropy and reversible work of expansion to write an equation 
that combines the first and second laws of thermodynamics. 

3. Utilize the combined first and second law relationship to derive Maxwell Relations 
stemming from the definitions of U, H, A, and G. 

4. Utilize the Maxwell Relations to derive expressions that govern changes in 
thermodynamic variable as systems move along specified pathways (such as 
constant temperature, pressure, volume, or adiabatic pathways.) 

5. Derive and utilize an expression describing the volume dependence of A. 
6. Derive and utilize an expression describing the pressure dependence of G. 
7. Derive and utilize expressions that describe the temperature, dependence of A and 

G. 
8. Derive an expression for, and evaluate the difference between Cp and CV for any 

substance, in terms of T, V, , and T. 

Problems 
 

1. Using data found at 

http://chem.libretexts.org/Reference/Reference_Tables/Thermodynamics_Tables/T1%3A

_Standard_Thermodynamic_Quantities, calculate the standard reaction Gibbs functions 

(Go)  for the following reactions at 298 K. 

 

a. CH3CH2OH(l) + 3 O2(g) → 2 CO2(g) + 3 H2O(l)  

b. C6H12O6(s) + 6 O2 → 6 CO2(g) + 6 H2O(l) 

c. 2 POCl3(l) → 2 PCl3(l) + O2(g) 

d. 2 KBr(s) + Cl2(g) → 2 KCl(s) + Br2(l) 

e. SiH4(g) + 2 Cl(g) → SiCl4(l) + 2 H2(g) 

 

2. Estimate G at 1000 K from its value at 298 K for the reaction 

 

C(s) + 2 H2(g) → CH4(g)  G = -50.75 kJ at 298 K 

 

3. The standard Gibbs function for formation (Gf
o) of PbO2(s) is  -217.4 kJ/mol at 298 K. 

Assuming O2 is an ideal gas, find the standard Helmholtz function for formation (Af
o) 

for PbO2 at 298K. 

 

4. Calculate the entropy change for 1.00 mol of an ideal monatomic gas (CV = 3/2 R) 

undergoing an expansion and simultaneous temperature increase from 10.0 L at 298 K to 

205.0 L at 455 K. 

https://creativecommons.org/licenses/by-nc-sa/4.0/
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5. Consider a gas that obeys the equation of state 

 

𝑝 =
𝑛𝑅𝑇

𝑉 − 𝑛𝑏
 

 

a. Find expressions for  and T for this gas. 

b. Evaluate the difference between Cp and CV for the gas. 

 

6. Show that (
𝜕𝐶𝑝

𝜕𝑝
)
𝑇
= 0 for an ideal gas. 

 

7. Derive the thermodynamic equation of state 

 

(
𝜕𝐻

𝜕𝑝
)
𝑇

= 𝑉(1 − 𝑇𝛼) 

 

8. Derive the thermodynamic equation of state 

 

(
𝜕𝑈

𝜕𝑉
)
𝑇
= 𝑇

𝛼

𝜅𝑇
− 𝑝 

 

9. The “Joule Coefficient” is defined by 

 

𝜇𝐽 = (
𝜕𝑇

𝜕𝑉
)
𝑈

 

 

 Show that 

 

𝜇𝐽 =
1

𝐶𝑉
(𝑝 −

𝑇𝛼

𝜅𝑇
) 

 

 and evaluate the expression for an ideal gas. 

 

10. Derive expressions for the pressure derivatives (
𝜕𝑋

𝜕𝑝
)
𝑇
 of U, H, A, G, and S at constant 

temperature in terms of measurable properties. (The derivation of (
𝜕𝐻

𝜕𝑝
)
𝑇
 was done in 

problem 7.) Evaluate the expressions for (
𝜕𝑆

𝜕𝑝
)
𝑇

, (
𝜕𝐻

𝜕𝑝
)
𝑇
, and (

𝜕𝑈

𝜕𝑝
)
𝑇
 for a van der Waals 

gas. 
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11. Derive expressions for the volume derivatives (
𝜕𝑋

𝜕𝑉
)
𝑇
 of U, H, A, G, and S at constant 

temperature in terms of measurable properties. (The derivation of (
𝜕𝑈

𝜕𝑉
)
𝑇
 was done in 

problem 8.) Evaluate the expressions for (
𝜕𝑋

𝜕𝑉
)
𝑇
 and (

𝜕𝑋

𝜕𝑉
)
𝑇
 for a van der Walls gas. 

 

12. Evaluate the difference between Cp and CV for a gas that obeys the equation of state 

 

𝑝 =
𝑛𝑅𝑇

𝑉 − 𝑛𝑏
 

 

13. The adiabatic compressibility (S) is defined by 

 

𝜅𝑆 ≡ −
1

𝑉
(
𝜕𝑉

𝜕𝑝
)
𝑆

 

 

Show that for an ideal gas,  

 

𝜅𝑆 =
1

𝑝𝛾
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