
Chapter 4 

 

1. Given the relationship 

 

(
𝜕𝑈

𝜕𝑉
)

𝑇
= 𝑇 (

𝜕𝑝

𝜕𝑇
)

𝑉
− 𝑝 

 

 show that  

 

(
𝜕𝑈

𝜕𝑉
)

𝑇
= 0 

 

 for an ideal gas. 

 

For an ideal gas, 

 

𝑝 =
𝑛𝑅𝑇

𝑉
 

 

So 

 

(
𝜕𝑝

𝜕𝑇
)

𝑉
=

𝑛𝑅

𝑉
 

 

Plugging this into the expression 

 

(
𝜕𝑈

𝜕𝑉
)

𝑇
= 𝑇 (

𝜕𝑝

𝜕𝑇
)

𝑉
− 𝑝 

 

Yields 

 

(
𝜕𝑈

𝜕𝑉
)

𝑇
= 𝑇 (

𝑛𝑅

𝑉
) − 𝑝 

 

And noting that  

 

𝑇 (
𝑛𝑅

𝑉
)  = 𝑝 

 

It can be seen that 

(
𝜕𝑈

𝜕𝑉
)

𝑇
= 𝑝 − 𝑝 = 0 

 

 

 



2. Determine if the following differential is exact, and if so, find the function z(x, y) that 

satisfies the expression. 

 

𝑑𝑧 = 4𝑥𝑦 𝑑𝑥 + 2𝑥2 𝑑𝑦 

 

In order to be an exact differential, the following must hold: 

 
𝜕

𝜕𝑦
𝑃(𝑥, 𝑦) =

𝜕

𝜕𝑥
𝑄(𝑥, 𝑦) 

 

where 

 

𝑃(𝑥, 𝑦) = 4𝑥𝑦  and  𝑄(𝑥, 𝑦) = 2𝑥2 

 

So,  

 
𝜕

𝜕𝑦
(4𝑥𝑦) = 4𝑥 

 

And  

 
𝜕

𝜕𝑥
(2𝑥2) = 4𝑥 

 

So, in fact 

 
𝜕

𝜕𝑦
𝑃(𝑥, 𝑦) =

𝜕

𝜕𝑥
𝑄(𝑥, 𝑦) 

 

So the differential is exact. 

 

To find the original function z(x,y) we need to note that 

 

(
𝜕𝑧

𝜕𝑥
)

𝑦
= 4𝑥𝑦  and  (

𝜕𝑧

𝜕𝑦
)

𝑧
= 2𝑥2 

 

From the first expression, integration yields 

 

𝑧 = 𝑦 ∫ 4𝑥  𝑑𝑥 = 2𝑥2𝑦 + 𝑐𝑜𝑛𝑠𝑡. 

 

The second expression yields something similar. 

 

𝑧 = 2𝑥2 ∫ 𝑑𝑦 = 2𝑥2𝑦 + 𝑐𝑜𝑛𝑠𝑡. 

 



So the function is 

 

𝑧(𝑥, 𝑦) = 2𝑥2𝑦 + 𝑐𝑜𝑛𝑠𝑡. 
 

 

 

3. For a van der Waals gas, (
𝜕𝑈

𝜕𝑉
)

𝑇
=

𝑎𝑛2

𝑉2 . Find an expression in terms of a, n, V, and R  for 

(
𝜕𝑇

𝜕𝑉
)

𝑈
 if CV = 3/2 R. Use the expression to calculate the temperature change for 1.00 mol 

of Xe (a = 4.19 atm L2 mol -2) expanding at constant internal energy against a vacuum 

from 10.0 L to 20.0 L. 

 

Consider U(V,T). This allows one to write the expression for the total differential 

 

𝑑𝑈 = (
𝜕𝑈

𝜕𝑉
)

𝑇
𝑑𝑉 + (

𝜕𝑈

𝜕𝑇
)

𝑉
𝑑𝑇 

 

Now, dividing by dV and constraining to constant U generates 

 
𝑑𝑈

𝑑𝑉
|

𝑈
= (

𝜕𝑈

𝜕𝑉
)

𝑇

𝑑𝑉

𝑑𝑉
|

𝑈
+ (

𝜕𝑈

𝜕𝑇
)

𝑉

𝑑𝑇

𝑑𝑉
|

𝑈
 

 

Which simplifies to  

 

0 = (
𝜕𝑈

𝜕𝑉
)

𝑇
+ (

𝜕𝑈

𝜕𝑇
)

𝑉
(

𝜕𝑇

𝜕𝑉
)

𝑈
 

 

And solving for (
𝜕𝑇

𝜕𝑉
)

𝑈
 and substituting for (

𝜕𝑈

𝜕𝑉
)

𝑇
 for a van der Waals gas (and keeping in mind 

that the heat capacity for the system depends on the amount of substance undergoing the 

expansion) 

 

(
𝜕𝑇

𝜕𝑉
)

𝑈
= −

(
𝜕𝑈
𝜕𝑉

)
𝑇

(
𝜕𝑈
𝜕𝑇

)
𝑉

= −
1

𝑛𝐶𝑉

𝑎𝑛2

𝑉2
= −

𝑎𝑛

𝐶𝑉𝑉2
 

 

In order to get the temperature change for a constant internal energy expansion, we need to 

evaluate 

 

∆𝑇 = ∫ (
𝜕𝑇

𝜕𝑉
)

𝑈
𝑑𝑉

𝑉2

𝑉1

 

 

So, substituting from above,  

 



∆𝑇 = −
𝑎𝑛

𝐶𝑉
∫

𝑑𝑉

𝑉2

𝑉2

𝑉1

=
𝑎𝑛

𝐶𝑉
(

1

𝑉2
−

1

𝑉1
) 

 

 

So 

 

∆𝑇 =
(4.19 𝑎𝑡𝑚 𝐿2𝑚𝑜𝑙−2)(1.00 𝑚𝑜𝑙)

(
3
2 ∙ 0.08206 𝑎𝑡𝑚 𝐿 𝑚𝑜𝑙−1𝐾−1)

(
1

20.0 𝐿
−

1

10.0 𝐿
) = −1.70 𝐾 

 

Note the choice of the units on R in order to cancel the units given in the constant a! 

 

4. Given the following data, calculate the change in volume for 50.0 cm3 of a) neon and b) 

copper due to a decrease in pressure from 1.00 atm to 0.750 atm at 298 K. 

 

Substance T (at 1.00 atm and 298 K) 

Ne 1.00 atm-1 

Cu 0.735 x 10-6 atm-1 

 

To solve this problem, we need an expression for the isothermal compressibility coefficient for 

these substances. 

 

𝜅𝑇 = −
1

𝑉
(

𝜕𝑉

𝜕𝑝
)

𝑇

 

 

The change in volume is then given by 

 

Δ𝑉 = ∫ (
𝜕𝑉

𝜕𝑝
)

𝑇

𝑑𝑝
𝑝2

𝑝1

= − ∫ 𝑉 𝜅𝑇 𝑑𝑝
𝑝2

𝑝1

 

 

If the change in volume is very small (as will be the case for solid copper), we can approximate 

V as Vi. and if T is constant over the pressure range, the expression becomes 

 

Δ𝑉 = −𝑉𝑖 𝜅𝑇 Δ𝑝 

 

So for Cu,  

 

Δ𝑉 = −(50.0 𝑐𝑚3)(0.735 ∙ 10−6𝑎𝑡𝑚−1)(0.750 𝑎𝑡𝑚 − 1.00 𝑎𝑡𝑚) 

= 9.2 ∙ 10−6𝑐𝑚3 

 

For a gas, such as neon, the volume will be highly dependent on the pressure. If we assume the 

gas is ideal, 

 



𝑉 =
𝑛𝑅𝑇

𝑝
 

 

And the expression for V, which is to be derived from 

 

∆𝑉 = ∫ (
𝜕𝑉

𝜕𝑝
)

𝑇

𝑑𝑝
𝑝2

𝑝1

 

 

The derivative can be determined analytically. 

 

(
𝜕𝑉

𝜕𝑝
)

𝑇

= −
𝑛𝑅𝑇

𝑝2
 

 

So 

 

∆𝑉 = −𝑛𝑅𝑇 ∫
𝑑𝑝

𝑝2

𝑝2

𝑝1

 

= 𝑛𝑅𝑇 [
1

𝑝
]

𝑝1

𝑝2

 

= 𝑛𝑅𝑇 (
1

𝑝2
−

1

𝑝1
) 

 

We can find an expression for n using the initial pressure, volume, and temperature. 

 

𝑛 =
𝑝1𝑉1

𝑅𝑇
 

 

So, 

 

∆𝑉 = (
𝑝1𝑉1

𝑅𝑇
) 𝑅𝑇 [

1

𝑝1
−

1

𝑝2
] = 𝑝1𝑉1 (

1

𝑝2
−

1

𝑝1
) 

= (1.00 𝑎𝑡𝑚)(50.0 𝑐𝑚3) (
1

0.750 𝑎𝑡𝑚
−

1

1.00 𝑎𝑡𝑚
) 

= 16.7 𝑐𝑚3 

 

Notice that if we had used Boyle’s Law 

 

𝑝1𝑉1 = 𝑝2𝑉2 

(1.00 𝑎𝑡𝑚)(50.0 𝑐𝑚3) = (0.750 𝑎𝑡𝑚)(𝑉2) 



𝑉2 = 66.7 𝑐𝑚3 

 

And 

 

∆𝑉 = 𝑉2 − 𝑉1 = 66.7 𝑐𝑚3 − 50.0 𝑐𝑚3 = 16.7 𝑐𝑚3 

 

We would have gotten the identical result! 

 

 

5. Consider a gas that follows the equation of state 

 

𝑝 =
𝑛𝑅𝑇

𝑉 − 𝑛𝑏
 

 

 derive an expression for  

a. the isobaric thermal expansivity,  

 

The isobaric thermal expansivity is defined by 

 

𝛼 =
1

𝑉
(

𝜕𝑉

𝜕𝑇
)

𝑝
 

 

This can be easily evaluated by solving the equation of state for V: 

 

𝑉 =
𝑛𝑅𝑇

𝑝
+ 𝑛𝑏 

 

Differentiating this with respect to T at constant p yields 

 

(
𝜕𝑉

𝜕𝑇
)

𝑝
=

𝑛𝑅

𝑝
 

 

And so, the expression for a is given by 

 

𝛼 =
1

𝑉
(

𝜕𝑉

𝜕𝑇
)

𝑝
=

𝑛𝑅

𝑝𝑉
 

 

b. the Joule-Thomson coefficient, JT 

𝜇𝐽𝑇 =
𝑉

𝐶𝑝

(𝑇𝛼 − 1) 

 

From the previous result,  



 

(
𝜕𝑉

𝜕𝑇
)

𝑝
=

𝑛𝑅

𝑝
 

 

So, because 𝜇𝐽𝑇 =
1

𝐶𝑝
(𝑇𝑉𝛼 − 𝑉), it follows 

 

𝜇𝐽𝑇 =
1

𝐶𝑝
(𝑇𝑉 [

1

𝑉
(

𝜕𝑉

𝜕𝑇
)

𝑝
] − 𝑉) 

 

𝜇𝐽𝑇 =
1

𝑐𝑝
[𝑇 (

𝑛𝑅

𝑝
) − 𝑉] 

 

An according to this particular equation of state, 

 
𝑛𝑅𝑇

𝑝
= 𝑉 − 𝑛𝑏 

 

So 

 

𝜇𝐽𝑇 =
1

𝑐𝑝
[
𝑛𝑅𝑇

𝑝
− 𝑉] =

1

𝐶𝑝

(𝑉 − 𝑛𝑏 − 𝑉) = −
𝑛𝑏

𝐶𝑝
 

 

 

 

6. Given 

 

(
𝜕𝐻

𝜕𝑝
)

𝑇

= −𝑇 (
𝜕𝑉

𝜕𝑇
)

𝑝
+ 𝑉 

 

derive an expression for (
𝜕𝑈

𝜕𝑝
)

𝑇
 in terms of measurable properties. Use your result to 

calculate the change in the internal energy of 18.0 g of water when the pressure is 

increased from 1.00 atm to 20.0 atm at 298 K. 

 

Starting from the definition of enthalpy 

 

𝐻 = 𝑈 + 𝑝𝑉 

 

Differentiating produces 

 

𝑑𝐻 = 𝑑𝑈 + 𝑝 𝑑𝑉 + 𝑉 𝑑𝑝 

 

Now, dividing by dp and constraining to constant T, 

 



𝑑𝐻

𝑑𝑝
|

𝑇

=
𝑑𝑈

𝑑𝑝
|

𝑇

+ 𝑝
𝑑𝑉

𝑑𝑝
|

𝑇

+ 𝑉
𝑑𝑝

𝑑𝑝
|

𝑇

 

 

which simplifies to 

 

(
𝜕𝐻

𝜕𝑝
)

𝑇

= (
𝜕𝑈

𝜕𝑝
)

𝑇

+ 𝑝 (
𝜕𝑉

𝜕𝑝
)

𝑇

+ 𝑉 

 

Substituting the relationship given in the problem 

 

−𝑇 (
𝜕𝑉

𝜕𝑇
)

𝑝
+ 𝑉 = (

𝜕𝑈

𝜕𝑝
)

𝑇

+ 𝑝 (
𝜕𝑉

𝜕𝑝
)

𝑇

+ 𝑉 

 

The volume terms cancel. Upon substitution using the definitions of  and T 

 

𝛼 =
1

𝑉
(

𝜕𝑉

𝜕𝑇
)

𝑝
  and  𝜅𝑇 = −

1

𝑉
(

𝜕𝑉

𝜕𝑝
)

𝑇
 

 

the expression becomes 

 

−𝑇𝑉𝛼 = (
𝜕𝑈

𝜕𝑝
)

𝑇

− 𝑝𝑉𝜅𝑇 

 

or 

 

(
𝜕𝑈

𝜕𝑝
)

𝑇

= 𝑇𝑉𝛼 − 𝑝𝑉𝜅𝑇 

 

For the rest of this, we need to look up values of  and T for water and solve the integral 

 

Δ𝑈 = ∫ (𝑇𝑉𝛼 − 𝑝𝑉𝜅𝑇)𝑑𝑝
20.0 𝑎𝑡𝑚

1.00 𝑎𝑡𝑚

 

 

 

7. Derive an expression for (
𝜕𝑈

𝜕𝑇
)

𝑝
. Begin with the definition of enthalpy, in order to 

determine 

 

𝑑𝐻 = 𝑑𝑈 + 𝑝𝑑𝑉 + 𝑉𝑑𝑝 

 

Finish by dividing by dT and constraining to constant pressure. Make substitutions for the 

measurable quantities, and solve for (
𝜕𝑈

𝜕𝑇
)

𝑝
. 

 



𝑑𝐻

𝑑𝑇
|

𝑝
=

𝑑𝑈

𝑑𝑇
|

𝑝
+ 𝑝

𝑑𝑉

𝑑𝑇
|

𝑝
+ 𝑉

𝑑𝑝

𝑑𝑇
|

𝑝
 

 

The last term of this vanishes (due to dp = 0), so after some substitution, the expression becomes 

 

𝐶𝑝 = (
𝜕𝑈

𝜕𝑇
)

𝑝
+ 𝑝𝑉𝛼 

 

Or 

 

(
𝜕𝑈

𝜕𝑇
)

𝑝
= 𝐶𝑝 − 𝑝𝑉𝛼 

 

8. Derive an expression for the difference between Cp and CV in terms of the internal 

pressure, , p and V. Using the definition for H as a starting point, show that 

 

(
𝜕𝐻

𝜕𝑇
)

𝑝
= (

𝜕𝑈

𝜕𝑇
)

𝑝
+ 𝑝 (

𝜕𝑉

𝜕𝑇
)

𝑝
 

 

𝐻 = 𝑈 + 𝑝𝑉 

 

𝑑𝐻 = 𝑑𝑈 + 𝑝𝑑𝑉 + 𝑉𝑑𝑝 

 

Now divide by dT and constrain to constant p: 

 
𝑑𝐻

𝑑𝑇
|

𝑝
=

𝑑𝑈

𝑑𝑇
|

𝑝
+ 𝑝

𝑑𝑉

𝑑𝑇
|

𝑝
+ 𝑉

𝑑𝑝

𝑑𝑇
|

𝑝
 

 

The last term vanished (since dp = 0 at constant p) so the expression becomes 

 

(
𝜕𝐻

𝜕𝑇
)

𝑝
= (

𝜕𝑈

𝜕𝑇
)

𝑝
+ 𝑝 (

𝜕𝑉

𝜕𝑇
)

𝑝
 

 

Now, find an expression for (
𝜕𝑈

𝜕𝑇
)

𝑝
 by starting with U(V,T) and writing an expression for 

the total differential dU. 

 

𝑑𝑈 = (
𝜕𝑈

𝜕𝑉
)

𝑇
𝑑𝑉 + (

𝜕𝑈

𝜕𝑇
)

𝑉
𝑑𝑇 

 

Divide by dp and constrain to constant T. Substitute this into the previous expressions 

and solve for (
𝜕𝐻

𝜕𝑇
)

𝑝
− (

𝜕𝑈

𝜕𝑇
)

𝑉
. 

 

From the total differential, divide by dT and constrain to constant p: 



 
𝑑𝑈

𝑑𝑇
|

𝑝
= (

𝜕𝑈

𝜕𝑇
)

𝑝

𝑑𝑉

𝑑𝑇
|

𝑝
+ (

𝜕𝑈

𝜕𝑇
)

𝑉

𝑑𝑇

𝑑𝑇
|

𝑝
 

 

Which becomes 

 

(
𝜕𝑈

𝜕𝑇
)

𝑝
= (

𝜕𝑈

𝜕𝑉
)

𝑇
(

𝜕𝑉

𝜕𝑇
)

𝑝
+ (

𝜕𝑈

𝜕𝑇
)

𝑉
 

 

Plugging this into the expression for (
𝜕𝐻

𝜕𝑇
)

𝑝
 yields 

 

(
𝜕𝐻

𝜕𝑇
)

𝑝
= [(

𝜕𝑈

𝜕𝑉
)

𝑇
(

𝜕𝑉

𝜕𝑇
)

𝑝
+ (

𝜕𝑈

𝜕𝑇
)

𝑉
] + 𝑝 (

𝜕𝑉

𝜕𝑇
)

𝑝
 

 

Noting the following: 

 

(
𝜕𝐻

𝜕𝑇
)

𝑝
= 𝐶𝑝; (

𝜕𝑈

𝜕𝑉
)

𝑇
= 𝜋𝑇; (

𝜕𝑉

𝜕𝑇
)

𝑝
= 𝑉𝛼; and (

𝜕𝑈

𝜕𝑇
)

𝑉
= 𝐶𝑉 

 

The expression becomes 

 

𝐶𝑝 = 𝜋𝑇𝑉𝛼 + 𝐶𝑉 + 𝑝𝑉𝛼 

 

Or 

 

𝐶𝑝 − 𝐶𝑉 = 𝑉(𝜋𝑇𝛼 + 𝑝𝛼) 

 

9. Evaluate the expression you derived in problem 8 for an ideal gas, assuming that the 

internal pressure of an ideal gas is zero. 

 

For an ideal gas, T  = 0 and  = 1/T. So 

 

𝐶𝑝 − 𝐶𝑉 =
𝑝𝑉

𝑇
= 𝑅 

 

 

 


